scholarly journals Canonical features of human antibodies recognizing the influenza hemagglutinin trimer interface

2021 ◽  
Author(s):  
Seth J. Zost ◽  
Jinhui Dong ◽  
Iuliia Gilchuk ◽  
Pavlo Gilchuk ◽  
Natalie J. Thornburg ◽  
...  

SUMMARYBroadly reactive antibodies targeting the influenza A hemagglutinin (HA) head domain are thought to be rare and to require extensive somatic mutations or unusual structural features to achieve breadth against divergent HA subtypes. Here we describe common genetic and structural features of diverse human antibodies from several individuals recognizing the trimer interface (TI) of the influenza HA head, a recently identified site of vulnerability1–3. We examined the sequence of TI-reactive antibodies, determined crystal structures for TI antibody-antigen complexes, and analyzed the contact residues of the antibodies on HA to discover common genetic and structural features of TI antibodies. Our data reveal that many TI antibodies are encoded by a light chain variable gene segment incorporating a shared somatic mutation. In addition, these antibodies have a shared acidic residue in the heavy chain despite originating from diverse heavy chain variable gene segments. These studies show that the TI region of influenza HA is a major antigenic site with conserved structural features that are recognized by a common human B cell public clonotype. The canonical nature of this antibody-antigen interaction suggests that the TI epitope might serve as an important new target for structure-based vaccine design.

2021 ◽  
Author(s):  
Brian Wrotniak ◽  
Meghan E Garrett ◽  
Sarah Baron ◽  
Hakimuddin Sojar ◽  
Alyssa Shon ◽  
...  

In studies on monoclonal Abs (mAbs) from long-term non-progressors (LTNPs), our laboratory has previously described highly mutated Abs against a complex conformational epitope with contributions from both gp41 heptad repeat regions. Despite using the VH1-02 gene segment, known to contribute to some of the broadest neutralizing Abs against HIV, members of these Abs, termed group 76C Abs, did not exhibit broad neutralization.<br />Because of the excessive mutations and use of VH1-02, our goal was to characterize the non-neutralizing functions of Abs of group 76C, to assess targeting of the epitope in various clinical presentations, and to assess the development of these Abs by comparison to their predicted common ancestor. Serum competition assays showed group 76C Abs were enriched in LTNPs, in comparison to VRC-01. Specific group 76C clones 6F5 and 6F11, expressed as recombinant Abs, both have robust ADCC activity, despite their sequence disparity. Sequence analysis predicted the common ancestor of this clonal group would utilize the germline non-mutated variable gene. We produced a recombinant ancestor Ab (76Canc) with a heavy chain utilizing the germline variable gene sequence paired to the 6F5 light chain. Competition with group 76C recombinant Ab 6F5 confirms 76Canc binds HIV envelope constructs near the original group C epitope. 76Canc demonstrates comparable ADCC to 6F5 and 6F11 when targeting both clade B and C HIV constructs. The functional capability of Abs utilizing germline VH1-02 has implications for disease control and vaccine development.


Nature ◽  
1986 ◽  
Vol 322 (6082) ◽  
pp. 843-846 ◽  
Author(s):  
Robert Kleinfield ◽  
Richard R. Hardy ◽  
David Tarlinton ◽  
Jeffery Dangl ◽  
Leonard A. Herzenberg ◽  
...  

2020 ◽  
Author(s):  
Shahan Mamoor

One study reported the incidence of central nervous system metastases in breast cancer patients treated with trastuzumab as 34% (1). We mined published microarray data (2-4) to discover genes associated with brain metastasis in breast cancer. We identified significant differential expression of the immunoglobulin heavy chain variable gene segment IGHV 4-31 in the metastases of patients with metastatic breast cancer, both in the lymph nodes and in the brain. We recently described the differential expression of the immunoglobulin light chain kappa constant locus in the brain metastases of patients with metastatic breast cancer (5). These data suggest both heavy and light chain gene segments may potentially be among the loci whose expression is most significantly altered transcriptome-wide when comparing primary tumors of the breast and brain metastases in patients with metastatic breast cancer. IGHV 4-31 may be relevant to the biology underlying colonization of the brain with metastatic breast cancer clones.


Transfusion ◽  
1997 ◽  
Vol 37 (11-12) ◽  
pp. 1111-1116 ◽  
Author(s):  
SJ Thorpe ◽  
CE Boult ◽  
FK Stevenson ◽  
ML Scott ◽  
J Sutherland ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James D. Allen ◽  
Ted M. Ross

AbstractWhile vaccines remain the best tool for preventing influenza virus infections, they have demonstrated low to moderate effectiveness in recent years. Seasonal influenza vaccines typically consist of wild-type influenza A and B viruses that are limited in their ability to elicit protective immune responses against co-circulating influenza virus variant strains. Improved influenza virus vaccines need to elicit protective immune responses against multiple influenza virus drift variants within each season. Broadly reactive vaccine candidates potentially provide a solution to this problem, but their efficacy may begin to wane as influenza viruses naturally mutate through processes that mediates drift. Thus, it is necessary to develop a method that commercial vaccine manufacturers can use to update broadly reactive vaccine antigens to better protect against future and currently circulating viral variants. Building upon the COBRA technology, nine next-generation H3N2 influenza hemagglutinin (HA) vaccines were designed using a next generation algorithm and design methodology. These next-generation broadly reactive COBRA H3 HA vaccines were superior to wild-type HA vaccines at eliciting antibodies with high HAI activity against a panel of historical and co-circulating H3N2 influenza viruses isolated over the last 15 years, as well as the ability to neutralize future emerging H3N2 isolates.


2012 ◽  
Vol 209 (12) ◽  
pp. 2199-2213 ◽  
Author(s):  
Sarah E. Powers ◽  
Malay Mandal ◽  
Satoshi Matsuda ◽  
Ana V. Miletic ◽  
Matthew H. Cato ◽  
...  

Ubiquitously expressed D-type cyclins are required for hematopoiesis but are dispensable in other cell lineages. Furthermore, within different hematopoietic progenitor populations the D-type cyclins play nonredundant roles. The basis of this lineage and developmental specificity is unknown. In pro–B cells we demonstrate four distinct nuclear D-type cyclin compartments, including one cyclin D3 fraction associated with CDK4 and another phosphoinositide 3-kinase–regulated fraction not required for proliferation. A third fraction of cyclin D3 was associated with the nuclear matrix and repression of &gt;200 genes including the variable (V) gene segments Igkv1-117, Iglv1, and Igh-VJ558. Consistent with different subnuclear compartments and functions, distinct domains of cyclin D3 mediated proliferation and Igk V gene segment repression. None of the cyclin D3 nuclear compartments overlapped with cyclin D2, which was distributed, unbound to CDK4, throughout the nucleus. Furthermore, compartmentalization of the cyclins appeared to be lineage restricted because in fibroblasts, cyclin D2 and cyclin D3 occupied a single nuclear compartment and neither bound CDK4 efficiently. These data suggest that subnuclear compartmentalization enables cyclin D3 to drive cell cycle progression and repress V gene accessibility, thereby ensuring coordination of proliferation with immunoglobulin recombination.


2014 ◽  
Vol 95 (5) ◽  
pp. 1033-1042 ◽  
Author(s):  
Blanca García-Barreno ◽  
Teresa Delgado ◽  
Sonia Benito ◽  
Inmaculada Casas ◽  
Francisco Pozo ◽  
...  

Murine hybridomas producing neutralizing mAbs specific to the pandemic influenza virus A/California/07/2009 haemagglutinin (HA) were isolated. These antibodies recognized at least two different but overlapping new epitopes that were conserved in the HA of most Spanish pandemic isolates. However, one of these isolates (A/Extremadura/RR6530/2010) lacked reactivity with the mAbs and carried two unique mutations in the HA head (S88Y and K136N) that were required simultaneously to eliminate reactivity with the murine antibodies. This unusual requirement directly illustrates the phenomenon of enhanced antigenic change proposed previously for the accumulation of simultaneous amino acid substitutions at antigenic sites of the influenza A virus HA during virus evolution (Shih et al., Proc Natl Acad Sci USA, 104 , 6283–6288, 2007). The changes found in the A/Extremadura/RR6530/2010 HA were not found in escape mutants selected in vitro with one of the mAbs, which contained instead nearby single amino acid changes in the HA head. Thus, either single or double point mutations may similarly alter epitopes of the new antigenic site identified in this work in the 2009 H1N1 pandemic virus HA. Moreover, this site is relevant for the human antibody response, as shown by competition of mAbs and human post-infection sera for virus binding. The results are discussed in the context of the HA antigenic structure and challenges posed for identification of sequence changes with possible antigenic impact during virus surveillance.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Peter Reuther ◽  
Kristina Göpfert ◽  
Alexandra H. Dudek ◽  
Monika Heiner ◽  
Susanne Herold ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document