scholarly journals Rv3737 is required for Mycobacterium tuberculosis growth in vitro and in vivo and correlates with bacterial load and disease severity in human tuberculosis

2021 ◽  
Author(s):  
Qing Li ◽  
Zhangli Peng ◽  
Xuefeng Fu ◽  
Hong Wang ◽  
Zhaoliang Zhao ◽  
...  

AbstractRv3737 is the sole homologue of multifunctional transporter ThrE in Mycobacterium tuberculosis (Mtb). In this study, we aimed to investigate whether this transporter participates in vitro and in vivo survival of Mtb. To characterize the role of Rv3737, we constructed and characterized an Mtb H37RvΔRv3737. This strain was evaluated for altered growth rate and macrophage survival using cell model of infection. In addition, the comparative analysis was conducted to determine the association between Rv3737 mRNA expression and disease severity in active pulmonary TB patients. The H37RvΔRv3737 strain exhibited significant slow growth rate compared to H37Rv-WT strain in standard culture medium. Additionally, the survival rate of H37Rv-WT strain in macrophages was 2 folds higher than that of H37RvΔRv3737 at 72 h. A significant higher level of TNF-α and IL-6 mRNA expression was observed in macrophages infected with H37RvΔRv3737 as compared to H37Rv-WT. Of note, Rv3737 expression was significantly increased in clinical Mtb isolates than H37Rv-WT. The relative expression level of Rv3737 was positively correlated with lung cavity number in TB patients. Similarly, the higher Rv3737 mRNA level resulted in lower C(t) value by Xpert MTB/RIF assay, demonstrating that a positive correlation between Rv3737 expression and bacterial load in TB patients. In conclusion, our data is the first to demonstrate that the transporter Rv3737 is required for in vitro growth and survival of bacteria inside macrophages. In addition, the expression level of Rv3737 is associated with bacterial load and disease severity in pulmonary tuberculosis patients.

2021 ◽  
Author(s):  
Qing Li ◽  
Zhangli Peng ◽  
Xuefeng Fu ◽  
Hong Wang ◽  
Zhaoliang Zhao ◽  
...  

Abstract Arms:Rv3737 is the sole homologueof multifunctionaltransporter ThrEin Mycobacterium tuberculosis(Mtb). In this study, we aimed to investigate whether this transporter participates in vitroand in vivosurvival of Mtb.Methods:To characterize the role of Rv3737, we constructed and characterized a Mtb H37RvΔRv3737. This strain was evaluated for altered growth rate and macrophage survivalusing acell model of infection. In addition, the comparative analysis was conducted to determine the association between Rv3737mRNA expression and disease severity in active pulmonary TB patients. Results:The H37RvΔRv3737 strain exhibited significantlyslow growth rate compared to H37Rv-WT strain in standard culture medium. Additionally, the survival rate of H37Rv-WTstrain in macrophages was 2 folds higher than that of H37RvΔRv3737 at 72 h. A significantlyhigher level of TNF-αand IL-6mRNA expression was observed in macrophages infected with H37RvΔRv3737 as compared to H37Rv-WT. Of note, Rv3737 expression was significantly increased in clinical Mtbisolates than H37Rv-WT. The relative expression level of Rv3737 was positively correlated with lung cavity numberof TB patients. Similarly, the higher Rv3737 mRNA level resulted in lower C(t) value by Xpert MTB/RIF assay, demonstrating that a positive correlation between Rv3737 expression and bacterial load in TB patients. Conclusions: Our data takes the lead indemonstrate that the transporter Rv3737 is required for in vitrogrowth and survival of bacteria inside macrophages. In addition, the expression level of Rv3737 is associated with bacterial load and disease severity inpulmonary tuberculosis patients.


2007 ◽  
Vol 196 (3) ◽  
pp. 529-538 ◽  
Author(s):  
Zheng Zhao ◽  
Ichiro Sakata ◽  
Yusuke Okubo ◽  
Kanako Koike ◽  
Kenji Kangawa ◽  
...  

Ghrelin, an endogenous ligand for the GH secretagog receptor, is predominantly produced in the stomach. It has been reported that endogenous ghrelin levels are increased by fasting and decreased after refeeding. It has also been reported that estrogen upregulates ghrelin expression and production and that somatostatin inhibits ghrelin secretion, whereas leptin has a paradoxical effect. Recently, several studies have shown that estrogen, somatostatin, and leptin are produced in the stomach, but the direct effects of these gastric hormones on ghrelin expression in a fasting state remain obscure. In this study, we examined the mRNA expression levels of gastric ghrelin, aromatase (estrogen synthetase), leptin and somatostatin, and concentrations of stomach leptin and portal vein 17β-estradiol in fasted male rats. After 48 h of fasting, although gastric ghrelin mRNA level was significantly increased, both gastric leptin mRNA level and leptin content were decreased. Further, refeeding of fasted rats resulted in a decrease in ghrelin expression level and an increase in leptin expression level. On the other hand, gastric estrogen and somatostatin levels did not change after fasting. In vitro studies revealed that leptin dose-dependently inhibited ghrelin expression and also inhibited estrogen-stimulated ghrelin expression. Moreover, ghrelin cells were found to be tightly surrounded by leptin cells. RT-PCR analysis clearly showed that long and short forms of the leptin receptor are expressed in the rat stomach. These results strongly suggest that an elevated gastric ghrelin expression level in a fasting state is regulated by attenuated restraint from decreased gastric leptin level.


2015 ◽  
Vol 59 (8) ◽  
pp. 4457-4463 ◽  
Author(s):  
Benoit Lechartier ◽  
Stewart T. Cole

ABSTRACTClofazimine (CZM) is an antileprosy drug that was recently repurposed for treatment of multidrug-resistant tuberculosis. InMycobacterium tuberculosis, CZM appears to act as a prodrug, which is reduced by NADH dehydrogenase (NDH-2), to release reactive oxygen species upon reoxidation by O2. CZM presumably competes with menaquinone (MK-4), a key cofactor in the mycobacterial electron transfer chain, for its reduction by NDH-2. We studied the effect of MK-4 supplementation on the activity of CZM againstM. tuberculosisand found direct competition between CZM and MK-4 for the cidal effect of CZM, against nonreplicating and actively growing bacteria, as MK-4 supplementation blocked the drug's activity against nonreplicating bacteria. We demonstrated that CZM, like bedaquiline, is synergisticin vitrowith benzothiazinones such as 2-piperazino-benzothiazinone 169 (PBTZ169), and this synergy also occurs against nonreplicating bacteria. The synergy between CZM and PBTZ169 was lost in an MK-4-rich medium, indicating that MK-4 is the probable link between their activities. The efficacy of the dual combination of CZM and PBTZ169 was testedin vivo, where a great reduction in bacterial load was obtained in a murine model of chronic tuberculosis. Taken together, these data confirm the potential of CZM in association with PBTZ169 as the basis for a new regimen against drug-resistant strains ofM. tuberculosis.


2019 ◽  
Author(s):  
Xin Zhang ◽  
Huimin Sun ◽  
Wanyuan Chen ◽  
Xianglei He

Abstract Background: Angiogenic factor with G-patch and FHA domains 1 (AGGF1) can promote angiogenesis and increasing evidence has highlighted the important roles of AGGF1 in tumorigenesis. However, the differential expression as well as the biological functions of AGGF1 in colorectal cancer (CRC) remain to be established. The purpose of the present study is therefore to identify the effect of AGGF1 on prognosis and metastasis in CRC patients. Methods: The expression level of AGGF1 in CRC was examined by qPCR, western blot and immunohistochemistry in a tissue microarray containing 236 CRC specimens and paired normal mucosae. And the effect of AGGF1 on CRC cell malignance was investigated in our established stable AGGF1 upregulated and knockdown CRC cell lines. Results: The expression level of AGGF1 in CRC tissue was not significantly different to that in adjacent normal mucosa at the mRNA level. However, at the protein level, AGGF1 expression in CRC tissues was significantly higher than in paired normal mucosa, which showed a clear association with TNM stage, AJCC stage, vascular invasion, and differentiation. Further, we revealed an apparent correlation between AGGF1 expression and poorer disease-free survival and overall survival of CRC patients. In addition, we discovered that AGGF1 significantly promoted CRC cell wound healing, migration, and invasion in vitro and distant metastasis in vivo. Conclusions: Our study demonstrates the aberrant overexpression of AGGF1 in CRC and provides a basis on which to explore the application of AGGF1 as a potential therapeutic target for CRC patients, especially for CRC patients with distant metastasis.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 587 ◽  
Author(s):  
Ina Puscas ◽  
Florian Bernard-Patrzynski ◽  
Martin Jutras ◽  
Marc-André Lécuyer ◽  
Lyne Bourbonnière ◽  
...  

Since most preclinical drug permeability assays across the blood-brain barrier (BBB) are still evaluated in rodents, we compared an in vitro mouse primary endothelial cell model to the mouse b.End3 and the acellular parallel artificial membrane permeability assay (PAMPA) models for drug screening purposes. The mRNA expression of key feature membrane proteins of primary and bEnd.3 mouse brain endothelial cells were compared. Transwell® monolayer models were further characterized in terms of tightness and integrity. The in vitro in vivo correlation (IVIVC) was obtained by the correlation of the in vitro permeability data with log BB values obtained in mice for seven drugs. The mouse primary model showed higher monolayer integrity and levels of mRNA expression of BBB tight junction (TJ) proteins and membrane transporters (MBRT), especially for the efflux transporter Pgp. The IVIVC and drug ranking underlined the superiority of the primary model (r2 = 0.765) when compared to the PAMPA-BBB (r2 = 0.391) and bEnd.3 cell line (r2 = 0.019) models. The primary monolayer mouse model came out as a simple and reliable candidate for the prediction of drug permeability across the BBB. This model encompasses a rapid set-up, a fair reproduction of BBB tissue characteristics, and an accurate drug screening.


2005 ◽  
Vol 49 (6) ◽  
pp. 2294-2301 ◽  
Author(s):  
Anne J. Lenaerts ◽  
Veronica Gruppo ◽  
Karen S. Marietta ◽  
Christine M. Johnson ◽  
Diane K. Driscoll ◽  
...  

ABSTRACT This study extends earlier reports regarding the in vitro and in vivo efficacies of the nitroimidazopyran PA-824 against Mycobacterium tuberculosis. PA-824 was tested in vitro against a broad panel of multidrug-resistant clinical isolates and was found to be highly active against all isolates (MIC < 1 μg/ml). The activity of PA-824 against M. tuberculosis was also assessed grown under conditions of oxygen depletion. PA-824 showed significant activity at 2, 10, and 50 μg/ml, similar to that of metronidazole, in a dose-dependent manner. In a short-course mouse infection model, the efficacy of PA-824 at 50, 100, and 300 mg/kg of body weight formulated in methylcellulose or cyclodextrin/lecithin after nine oral treatments was compared with those of isoniazid, rifampin, and moxifloxacin. PA-824 at 100 mg/kg in cyclodextrin/lecithin was as active as moxifloxacin at 100 mg/kg and isoniazid at 25 mg/kg and was slightly more active than rifampin at 20 mg/kg. Long-term treatment with PA-824 at 100 mg/kg in cyclodextrin/lecithin reduced the bacterial load below 500 CFU in the lungs and spleen. No significant differences in activity between PA-824 and the other single drug treatments tested (isoniazid at 25 mg/kg, rifampin at 10 mg/kg, gatifloxacin at 100 mg/kg, and moxifloxacin at 100 mg/kg) could be observed. In summary, its good activity in in vivo models, as well as its activity against multidrug-resistant M. tuberculosis and against M. tuberculosis isolates in a potentially latent state, makes PA-824 an attractive drug candidate for the therapy of tuberculosis. These data indicate that there is significant potential for effective oral delivery of PA-824 for the treatment of tuberculosis.


Zygote ◽  
2009 ◽  
Vol 17 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Bao Ying Yin ◽  
Yong Zhang ◽  
Jian Hong Sun ◽  
Ji Xia Li ◽  
Ye Fei Ma

SummaryTo evaluate gene expression of Connexin37 (Cx37) in oocytes from in vitro follicles at different stages, mouse preantral follicles were isolated and cultured for 12 days in vitro. Compared with in vitro follicles, follicles grown in vivo were collected at day 14 (d14), d16, d18, d20, d22 and d24 with the same stages for gene expression of Cx37 in oocytes. Our results showed that Cx37 mRNA increased along with follicular development, reached the highest level at the onset of antrum cavity formation and decreased after antrum formation in both in vivo and in vitro mouse oocytes. However, Cx37 mRNA was significant higher (p < 0.01) in in vitro cultured oocytes than in vivo oocytes. Moreover, significantly higher levels of Cx37 mRNA were found in oocytes from in vitro disrupted follicles (p < 0.01) and non-grown follicles (p < 0.05) than those from normal follicles with a similar size. These data determine temporal gene expression of Cx37 in oocytes from follicules at different stages and indicate that the gene expression level of Cx37 in oocytes could be evaluated as a criterion to the regulatory mechanism of Cx37 in an in vitro model.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xin Zhang ◽  
Huimin Sun ◽  
Wanyuan Chen ◽  
Xianglei He

Abstract Background Angiogenic factor with G-patch and FHA domains 1 (AGGF1) can promote angiogenesis and increasing evidence has highlighted the important roles of AGGF1 in tumorigenesis. However, the differential expression as well as the biological functions of AGGF1 in colorectal cancer (CRC) remain to be established. The purpose of the present study is therefore to identify the effect of AGGF1 on prognosis and metastasis in CRC patients. Methods The expression level of AGGF1 in CRC was examined by qPCR, western blot and immunohistochemistry in a tissue microarray containing 236 CRC specimens and paired normal mucosae. And the effect of AGGF1 on CRC cell malignance was investigated in our established stable AGGF1 upregulated and knockdown CRC cell lines. Results The expression level of AGGF1 in CRC tissue was not significantly different to that in adjacent normal mucosa at the mRNA level. However, at the protein level, AGGF1 expression in CRC tissues was significantly higher than in paired normal mucosa, which showed a clear association with TNM stage, AJCC stage, vascular invasion, and differentiation. Further, we revealed an apparent correlation between AGGF1 expression and poorer disease-free survival and overall survival of CRC patients. In addition, we discovered that AGGF1 significantly promoted CRC cell wound healing, migration, and invasion in vitro and distant metastasis in vivo. Conclusions Our study demonstrates the aberrant overexpression of AGGF1 in CRC and provides a basis on which to explore the application of AGGF1 as a potential therapeutic target for CRC patients, especially for CRC patients with distant metastasis.


1999 ◽  
Vol 43 (5) ◽  
pp. 1285-1288 ◽  
Author(s):  
Jason V. Brooks ◽  
Synthia K. Furney ◽  
Ian M. Orme

ABSTRACT The capacity of metronidazole to inhibit the growth ofMycobacterium tuberculosis was tested in in vitro and in vivo mouse models. In vitro addition of metronidazole to cultures of infected bone marrow-derived macrophages had no effect, nor did it increase the reduction in bacterial load due to isoniazid. In vivo, metronidazole did not reduce bacterial numbers in the lungs of aerosol-infected mice during the active stage of the disease, during a phase of containment, or after prolonged isoniazid therapy (Cornell model). A small but significant reduction was seen if metronidazole therapy was given during an established chronic disease state 100 days after aerosol administration. These data indicate that under most conditions M. tuberculosis organisms are not in a metabolic state in which they are susceptible to the action of metronidazole and, hence, that this drug would be of limited clinical value.


2019 ◽  
Author(s):  
Xin Zhang ◽  
Huimin Sun ◽  
Wanyuan Chen ◽  
Xianglei He

Abstract Background: Angiogenic factor with G-patch and FHA domains 1 ( AGGF1 ) can promote angiogenesis and increasing evidence has highlighted the important roles of AGGF1 in tumorigenesis. However, the differential expression as well as the biological functions of AGGF1 in colorectal cancer ( CRC ) remain to be established. The purpose of the present study is therefore to identify the effect of AGGF1 on prognosis and metastasis in CRC patients. Methods: The expression level of AGGF1 in CRC was examined by qPCR, western blot and immunohistochemistry in a tissue microarray containing 236 CRC specimens and paired normal mucosae. And the effect of AGGF1 on CRC cell malignance was investigated in our established stable AGGF1 upregulated and knockdown CRC cell lines. Results: The expression level of AGGF1 in CRC tissue was not significantly different to that in adjacent normal mucosa at the mRNA level. However, at the protein level, AGGF1 expression in CRC tissues was significantly higher than in paired normal mucosa, which showed a clear association with TNM stage, AJCC stage, vascular invasion, and differentiation. Further, we revealed an apparent correlation between AGGF1 expression and poorer disease-free survival and overall survival of CRC patients. In addition, we discovered that AGGF1 significantly promoted CRC cell wound healing, migration, and invasion in vitro and distant metastasis in vivo . Conclusions: Our study demonstrates the aberrant overexpression of AGGF1 in CRC and provides a basis on which to explore the application of AGGF1 as a potential therapeutic target for CRC patients, especially for CRC patients with distant metastasis.


Sign in / Sign up

Export Citation Format

Share Document