scholarly journals Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class

Author(s):  
Micah Rapp ◽  
Yicheng Guo ◽  
Eswar R. Reddem ◽  
Lihong Liu ◽  
Pengfei Wang ◽  
...  

SUMMARYAntibodies with heavy chains that derive from the VH1-2 gene constitute some of the most potent SARS-CoV-2-neutralizing antibodies yet identified. To provide insight into whether these genetic similarities inform common modes of recognition, we determined structures of the SARS-CoV-2 spike in complex with three VH1-2-derived antibodies: 2-15, 2-43, and H4. All three utilized VH1-2-encoded motifs to recognize the receptor-binding domain (RBD), with heavy chain N53I enhancing binding and light chain tyrosines recognizing F486RBD. Despite these similarities, class members bound both RBD-up and -down conformations of the spike, with a subset of antibodies utilizing elongated CDRH3s to recognize glycan N343 on a neighboring RBD – a quaternary interaction accommodated by an increase in RBD separation of up to 12 Å. The VH1-2-antibody class thus utilizes modular recognition encoded by modular genetic elements to effect potent neutralization, with VH-gene component specifying recognition of RBD and CDRH3 component specifying quaternary interactions.HighlightsDetermine structures of VH1-2-derived antibodies 2-43, 2-15, and H4 in complex with SARS-CoV-2 spikeDefine a multi-donor VH1-2-antibody class with modular components for RBD and quaternary recognitionReveal structural basis of RBD-up and RBD-down recognition within the classShow somatic hypermutations and avidity to be critical for potencyDelineate changes in spike conformation induced by CDRH3-mediated quaternary recognition

Cell Research ◽  
2021 ◽  
Author(s):  
Renhong Yan ◽  
Ruoke Wang ◽  
Bin Ju ◽  
Jinfang Yu ◽  
Yuanyuan Zhang ◽  
...  

AbstractNeutralizing monoclonal antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represent promising candidates for clinical intervention against coronavirus disease 2019 (COVID-19). We isolated a large number of nAbs from SARS-CoV-2-infected individuals capable of disrupting proper interaction between the receptor binding domain (RBD) of the viral spike (S) protein and the receptor angiotensin converting enzyme 2 (ACE2). However, the structural basis for their potent neutralizing activity remains unclear. Here, we report cryo-EM structures of the ten most potent nAbs in their native full-length IgG-form or in both IgG-form and Fab-form bound to the trimeric S protein of SARS-CoV-2. The bivalent binding of the full-length IgG is found to associate with more RBDs in the “up” conformation than the monovalent binding of Fab, perhaps contributing to the enhanced neutralizing activity of IgG and triggering more shedding of the S1 subunit from the S protein. Comparison of a large number of nAbs identified common and unique structural features associated with their potent neutralizing activities. This work provides a structural basis for further understanding the mechanism of nAbs, especially through revealing the bivalent binding and its correlation with more potent neutralization and the shedding of S1 subunit.


2021 ◽  
Author(s):  
Xiaojing Chi ◽  
Xinhui Zhang ◽  
Shengnan Pan ◽  
Yanying Yu ◽  
Tianli Lin ◽  
...  

The wide transmission and host adaptation of SARS-CoV-2 have led to the rapid accumulation of mutations, posing significant challenges to the effectiveness of vaccines and therapeutic antibodies. Although several neutralizing antibodies were authorized for emergency clinical use, natural antibodies isolated from convalescent patients are vulnerable to SARS-CoV-2 Spike mutations. Here, we describe the screen of a panel of SARS-CoV-2 receptor-binding domain (RBD) targeted nanobodies (Nbs) from a synthetic library and the design of a biparatopic Nb dimer, named Nb1-Nb2, with tight affinity and super wide neutralization breadth against multiple SARS-CoV-2 variants of concern or interest. Deep-mutational scanning experiments identify the potential binding epitopes of the monomeric Nb1 and Nb2 on the RBD and demonstrate that bivalent Nb1-Nb2 has a strong escape resistant feature against more than 60 tested RBD amino acid substitutions. Using pseudovirion-based and trans-complementation SARS-CoV-2 tools, we determine that Nb1-Nb2 broadly neutralizes SARS-CoV-2, including variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Lambda (C.37), Kappa (B.1.617.1) and Mu (B.1.621). Furthermore, a heavy chain antibody is constructed by fusing the human IgG1 Fc to the biparatopic Nb (designated as Nb1-Nb2-Fc) to improve its neutralization potency, yield, stability and potential half-life extension. For the new Omicron variant (B.1.1.529) that harbors unprecedented multiple RBD mutations, Nb1-Nb2-Fc keeps a firm affinity (KD < 1.0*10E-12 M) and neutralizing activity (IC50 = 0.0017 nM). Together, we developed a biparatopic human heavy chain antibody with ultrapotent and broad-spectrum SARS-CoV-2 neutralization activity which highlights the potential clinical applications.


2021 ◽  
Author(s):  
Tongqing Zhou ◽  
Lingshu Wang ◽  
John Misasi ◽  
Amarendra Pegu ◽  
Yi Zhang ◽  
...  

With B.1.1.529 SARS-CoV-2 variant's rapid spread and substantially increased resistance to neutralization by vaccinee and convalescent sera, monoclonal antibodies with potent neutralization are eagerly sought. To provide insight into effective neutralization, we determined cryo-EM structures and evaluated potent receptor-binding domain (RBD) antibodies for their ability to bind and neutralize this new variant. B.1.1.529 RBD mutations altered 16% of the RBD surface, clustering on a ridge of this domain proximal to the ACE2-binding surface and reducing binding of most antibodies. Significant inhibitory activity was retained, however, by select monoclonal antibodies including A19-58.1, B1-182.1, COV2-2196, S2E12, A19-46.1, S309 and LY-CoV1404, which accommodated these changes and neutralized B.1.1.529 with IC50s between 5.1-281 ng/ml, and we identified combinations of antibodies with potent synergistic neutralization. Structure-function analyses delineated the impact of resistance mutations and revealed structural mechanisms for maintenance of potent neutralization against emerging variants.


Science ◽  
2021 ◽  
pp. eabi9745
Author(s):  
Yongfei Cai ◽  
Jun Zhang ◽  
Tianshu Xiao ◽  
Christy L. Lavine ◽  
Shaun Rawson ◽  
...  

Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains in the COVID-19 pandemic. We report here cryo-EM structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Amino acid substitutions in the B.1.1.7 protein increase the accessibility of its receptor binding domain and also the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement may account for the increased transmissibility. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, making it resistant to some potent neutralizing antibodies. These findings provide structural details on how SARS-CoV-2 has evolved to enhance viral fitness and immune evasion.


Author(s):  
Christopher O. Barnes ◽  
Claudia A. Jette ◽  
Morgan E. Abernathy ◽  
Kim-Marie A. Dam ◽  
Shannon R. Esswein ◽  
...  

AbstractThe COVID-19 pandemic presents an urgent health crisis. Human neutralizing antibodies (hNAbs) that target the host ACE2 receptor-binding domain (RBD) of the SARS-CoV-2 spike1–5 show therapeutic promise and are being evaluated clincally6–8. To determine structural correlates of SARS-CoV-2 neutralization, we solved 8 new structures of distinct COVID-19 hNAbs5 in complex with SARS-CoV-2 spike trimer or RBD. Structural comparisons allowed classification into categories: (1) VH3-53 hNAbs with short CDRH3s that block ACE2 and bind only to “up” RBDs, (2) ACE2-blocking hNAbs that bind both “up” and “down” RBDs and can contact adjacent RBDs, (3) hNAbs that bind outside the ACE2 site and recognize “up” and “down” RBDs, and (4) Previously-described antibodies that do not block ACE2 and bind only “up” RBDs9. Class 2 comprised four hNAbs whose epitopes bridged RBDs, including a VH3-53 hNAb that used a long CDRH3 with a hydrophobic tip to bridge between adjacent “down” RBDs, thereby locking spike into a closed conformation. Epitope/paratope mapping revealed few interactions with host-derived N-glycans and minor contributions of antibody somatic hypermutations to epitope contacts. Affinity measurements and mapping of naturally-occurring and in vitro-selected spike mutants in 3D provided insight into the potential for SARS-CoV-2 escape from antibodies elicited during infection or delivered therapeutically. These classifications and structural analyses provide rules for assigning current and future human RBD-targeting antibodies into classes, evaluating avidity effects, suggesting combinations for clinical use, and providing insight into immune responses against SARS-CoV-2.


Author(s):  
Rachael A. Mansbach ◽  
Srirupa Chakraborty ◽  
Kien Nguyen ◽  
David C. Montefiori ◽  
Bette Korber ◽  
...  

SummaryThe COVID-19 pandemic underwent a rapid transition with the emergence of a SARS-CoV-2 variant that carried the amino acid substitution D614G in the Spike protein that became globally prevalent. The G-form is both more infectious in vitro and associated with increased viral loads in infected people. To gain insight into the mechanism underlying these distinctive characteristics, we employed multiple replicas of microsecond all-atom simulations to probe the molecular-level impact of this substitution on Spike’s closed and open states. The open state enables Spike interactions with its human cellular receptor, ACE2. Here we show that changes in the inter-protomer energetics due to the D614G substitution favor a higher population of infection-capable (open) states. The inter-protomer interactions between S1 and S2 subunits in the open state of the D-form are asymmetric. This asymmetry is resolved in the G-form due to the release of tensile hydrogen bonds resulting in an increased population of open conformations. Thus, the increased infectivity of the G-form is likely due to a higher rate of profitable binding encounters with the host receptor. It is also predicted to be more neutralization sensitive due to enhanced exposure of the receptor binding domain, a key target region for neutralizing antibodies.


Author(s):  
Gabriele Cerutti ◽  
Micah Rapp ◽  
Yicheng Guo ◽  
Fabiana Bahna ◽  
Jude Bimela ◽  
...  

SummaryEmerging SARS-CoV-2 strains, B.1.1.7 and B.1.351, from the UK and South Africa, respectively show decreased neutralization by monoclonal antibodies and convalescent or vaccinee sera raised against the original wild-type virus, and are thus of clinical concern. However, the neutralization potency of two antibodies, 1-57 and 2-7, which target the receptor-binding domain (RBD) of spike, was unaffected by these emerging strains. Here, we report cryo-EM structures of 1-57 and 2-7 in complex with spike, revealing each of these antibodies to utilize a distinct mechanism to bypass or accommodate RBD mutations. Notably, each antibody represented a response with recognition distinct from those of frequent antibody classes. Moreover, many epitope residues recognized by 1-57 and 2-7 were outside hotspots of evolutionary pressure for both ACE2 binding and neutralizing antibody escape. We suggest the therapeutic use of antibodies like 1-57 and 2-7, which target less prevalent epitopes, could ameliorate issues of monoclonal antibody escape.


Author(s):  
Nicholas K. Hurlburt ◽  
Yu-Hsin Wan ◽  
Andrew B. Stuart ◽  
Junli Feng ◽  
Andrew T. McGuire ◽  
...  

AbstractSARS-CoV-2 is a betacoronavirus virus responsible for the COVID-19 pandemic. Here, we determined the X-ray crystal structure of a potent neutralizing monoclonal antibody, CV30, isolated from a patient infected with SARS-CoV-2, in complex with the receptor binding domain (RBD). The structure reveals CV30’s epitope overlaps with the human ACE2 receptor binding site thus providing the structural basis for its neutralization by preventing ACE2 binding.


2021 ◽  
Author(s):  
Walther Mothes ◽  
Wenwei Li ◽  
Yaozong Chen ◽  
Jeremie Prevost ◽  
Irfan Ullah ◽  
...  

Emerging variants of concern for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transmit more efficiently and partially evade protective immune responses, thus necessitating continued refinement of antibody therapies and immunogen design. Here we elucidate the structural basis and mode of action for two potent SARS-CoV-2 Spike (S) neutralizing monoclonal antibodies CV3-1 and CV3-25 that remained effective against emerging variants of concern in vitro and in vivo. CV3-1 bound to the (485-GFN-487) loop within the receptor-binding domain (RBD) in the RBD-up position and triggered potent shedding of the S1 subunit. In contrast, CV3-25 inhibited membrane fusion by binding to an epitope in the stem helix region of the S2 subunit that is highly conserved among beta-coronaviruses. Thus, vaccine immunogen designs that incorporate the conserved regions in RBD and stem helix region are candidates to elicit pan-coronavirus protective immune responses.


Author(s):  
Etienne Brochot ◽  
Baptiste Demey ◽  
Antoine Touzé ◽  
Sandrine Belouzard ◽  
Jean Dubuisson ◽  
...  

SummaryObjectiveThe objective of this study was to monitor the anti-SARS-CoV-2 antibody response in infected patients.MethodsIn order to assess the time of seroconversion, we used 151 samples from 30 COVID-19 inpatients and monitored the detection kinetics of anti-S1, anti-S2, anti-RBD and anti-N antibodies with in-house ELISAs. We also monitored the presence of neutralizing antibodies in these samples as well as 25 asymptomatic carrier samples using retroviral particles pseudotyped with the spike of the SARS-CoV-2.ResultsWe observed that specific antibodies were detectable in all inpatients two weeks post-symptom onset. The detection of the SARS-CoV-2 Nucleocapsid and RBD was more sensitive than the detection of the S1 or S2 subunits. Neutralizing antibodies reached a plateau two weeks post-symptom onset and then declined in the majority of inpatients. Furthermore, neutralizing antibodies were undetectable in 56% of asymptomatic carriers.ConclusionsOur results raise questions concerning the role played by neutralizing antibodies in COVID-19 cure and protection against secondary infection. They also suggest that induction of neutralizing antibodies is not the only strategy to adopt for the development of a vaccine. Finally, they imply that anti-SARS-CoV-2 neutralizing antibodies should be titrated to optimize convalescent plasma therapy.HighlightsSpecific antibodies are detectable in 100% COVID-19 inpatients two weeks post-symptom onset.The detection of the SARS-CoV-2 Nucleocapsid and Receptor Binding Domain is more sensitive than the detection of the S1 or S2 subunits.Neutralizing antibodies reach a plateau two weeks post-symptom onset and then decline in the majority of inpatients.Neutralizing antibodies are undetectable in the majority of asymptomatic carriers.


Sign in / Sign up

Export Citation Format

Share Document