scholarly journals miRge3.0: a comprehensive microRNA and tRF sequencing analysis pipeline

2021 ◽  
Author(s):  
Arun H. Patil ◽  
Marc K. Halushka

ABSTRACTMicroRNAs and tRFs are classes of small non-coding RNAs, known for their roles in translational regulation of genes. Advances in next-generation sequencing (NGS) have enabled high-throughput small RNA-seq studies, which require robust alignment pipelines. Our laboratory previously developed miRge and miRge2.0, as flexible tools to process sequencing data for annotation of miRNAs and other small-RNA species and further predict novel miRNAs using a support vector machine approach. Although, miRge2.0 is a leading analysis tool in terms of speed with unique quantifying and annotation features, it has a few limitations. We present miRge3.0 which provides additional features along with compatibility to newer versions of Cutadapt and Python. The revisions of the tool include the ability to process Unique Molecular Identifiers (UMIs) to account for PCR duplicates while quantifying miRNAs in the datasets and an accurate GFF3 formatted isomiR tool. miRge3.0 also has speed improvements benchmarked to miRge2.0, Chimira and sRNAbench. Finally, miRge3.0 output integrates into other packages for a streamlined analysis process and provides a cross-platform Graphical User Interface (GUI). In conclusion miRge3.0 is our 3rd generation small RNA-seq aligner with improvements in speed, versatility, and functionality over earlier iterations.

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Arun H Patil ◽  
Marc K Halushka

Abstract MicroRNAs and tRFs are classes of small non-coding RNAs, known for their roles in translational regulation of genes. Advances in next-generation sequencing (NGS) have enabled high-throughput small RNA-seq studies, which require robust alignment pipelines. Our laboratory previously developed miRge and miRge2.0, as flexible tools to process sequencing data for annotation of miRNAs and other small-RNA species and further predict novel miRNAs using a support vector machine approach. Although miRge2.0 is a leading analysis tool in terms of speed with unique quantifying and annotation features, it has a few limitations. We present miRge3.0 that provides additional features along with compatibility to newer versions of Cutadapt and Python. The revisions of the tool include the ability to process Unique Molecular Identifiers (UMIs) to account for PCR duplicates while quantifying miRNAs in the datasets, correct erroneous single base substitutions in miRNAs with miREC and an accurate mirGFF3 formatted isomiR tool. miRge3.0 also has speed improvements benchmarked to miRge2.0, Chimira and sRNAbench. Finally, miRge3.0 output integrates into other packages for a streamlined analysis process and provides a cross-platform Graphical User Interface (GUI). In conclusion miRge3.0 is our third generation small RNA-seq aligner with improvements in speed, versatility and functionality over earlier iterations.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e13032-e13032 ◽  
Author(s):  
Anton Buzdin ◽  
Andrew Garazha ◽  
Maxim Sorokin ◽  
Alex Glusker ◽  
Alexey Aleshin ◽  
...  

e13032 Background: Intracellular molecular pathways (IMPs) control all major events in the living cell. They are considered hotspots in contemporary oncology because knowledge of IMPs activation is essential for understanding mechanisms of molecular pathogenesis in oncology. Profiling IMPs requires RNA-seq data for tumors and for a collection of reference normal tissues. However, there is a shortage now in such profiles for normal tissues from healthy human donors, uniformly profiled in a single series of experiments. Access to the largest dataset of normal profiles GTEx is only partly available through the dbGaP. In TCGA database, norms are adjacent to surgically removed tumors and may be affected by tumor-linked growth factors, inflammation and altered vascularization. ENCODE datasets were for the autopsies of normal tissues, but they can’t form statistically significant reference groups. Methods: Tissue samples representing 20 organs were taken from post-mortal human healthy donors killed in road accidents no later than 36 hours after death, blood samples were taken from healthy volunteers. Gene expression was profiled in RNA-seq experiments using the same reagents, equipment and protocols. Bioinformatic algorithms for IMP analysis were developed and validated using experimental and public gene expression datasets. Results: From original sequencing data we constructed the biggest fully open reference expression database of normal human tissues including 465 profiles termed Oncobox Atlas of Normal Tissue Expression (ANTE, original data: GSE120795). We next developed a method termed Oncobox for interrogating activation of IMPs in human cancers. It includes modules of expression data harmonization and comparison and an algorithm for automatic annotation of molecular pathways. The Oncobox system enables accurate scoring of thousands molecular pathways using RNA-seq data. Oncobox pathway analysis is also applicable for quantitative proteomics and microRNA data in oncology. Conclusions: The Oncobox system can be used for a plethora of applications in cancer research including finding differentially regulated genes and IMPs, and for discovery of new pathway-related diagnostic and prognostic biomarkers.


2017 ◽  
Author(s):  
Lionel Morgado ◽  
Ritsert C. Jansen ◽  
Frank Johannes

ABSTRACTThe loading of small RNA (sRNA) into Argonaute (AGO) complexes is a crucial step in all regulatory pathways identified so far in plants that depend on such non-coding sequences. Important transcriptional and post-transcriptional silencing mechanisms can be activated depending on the specific AGO protein to which sRNA bind. It is known that sRNA-AGO associations are at least partly encoded in the sRNA primary structure, but the sequence features that drive this association have not been fully explored. Here we train support vector machines (SVM) on sRNA sequencing data obtained from AGO-immunoprecipitation experiments to identify features that determine sRNA affinity to specific AGOs. Our SVM reveal that AGO affinity is strongly determined by complex k-mers in the 5’ and 3’ ends of sRNA, in addition to well-known features such as sRNA length and the base composition of the first nucleotide. Moreover, we find that these k-mers tend to overlap known transcription factor (TF) binding motifs, thus highlighting a close interplay between TF and sRNA-mediated transcriptional regulation. We embedded the learned SVM in a computational pipeline that can be used for de novo functional classification of sRNA sequences. This tool, called SAILS, is provided as a web portal accessible at http://sails.eu.nu.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 888
Author(s):  
Elizabeth Baskin ◽  
Peter DeFord ◽  
Allison F. Dennis ◽  
Ian Misner ◽  
Frederick J. Tan ◽  
...  

The rapid rise of high-throughput, data intensive experimental techniques has thrust many biologists into the role of data analyst – a role many biologists feel ill equipped to fill. Novices often struggle to find the resources and expertise they need to analyze their experimental results in a wet-lab environment. To fill this need, we developed an educational resource as part of a National Center for Biotechnology Information (NCBI) hackathon. Using RNA-seq as a model, our tutorial guides new users through the steps of data analysis, while placing an emphasis on understanding the motivation behind choices made in the process. To advance the goal of providing a deeper understanding of the analysis process, we developed a new tool, bamDiff. bamDiff allows users to compare the performance of multiple RNA-seq aligners, allowing users to select the most appropriate aligner for the data in question and experimental end-goal. Our tutorial is accessible via a GitHub wiki, with associated data and software provided on an Amazon Machine Image (AMI), which can be completed at no cost to the user through the Amazon Educate Program. Following the hackathon, our tutorial was integrated into the October 2015 offering of NCBI NOW (Next Generation Sequencing (NGS) Online Workshop) a free online experience targeting individuals new to NGS analysis.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1
Author(s):  
Konstantinos Geles ◽  
Domenico Palumbo ◽  
Assunta Sellitto ◽  
Giorgio Giurato ◽  
Eleonora Cianflone ◽  
...  

Current bioinformatics workflows for PIWI-interacting RNA (piRNA) analysis focus primarily on germline-derived piRNAs and piRNA-clusters. Frequently, they suffer from outdated piRNA databases, questionable quantification methods, and lack of reproducibility. Often, pipelines specific to miRNA analysis are used for the piRNA research in silico. Furthermore, the absence of a well-established database for piRNA annotation, as for miRNA, leads to uniformity issues between studies and generates confusion for data analysts and biologists. For these reasons, we have developed WIND (Workflow for pIRNAs aNd beyonD), a bioinformatics workflow that addresses the crucial issue of piRNA annotation, thereby allowing a reliable analysis of small RNA sequencing data for the identification of piRNAs and other small non-coding RNAs (sncRNAs) that in the past have been incorrectly classified as piRNAs. WIND allows the creation of a comprehensive annotation track of sncRNAs combining information available in RNAcentral, with piRNA sequences from piRNABank, the first database dedicated to piRNA annotation. WIND was built with Docker containers for reproducibility and integrates widely used bioinformatics tools for sequence alignment and quantification. In addition, it includes Bioconductor packages for exploratory data and differential expression analysis. Moreover, WIND implements a "dual" approach for the evaluation of sncRNAs expression level quantifying the aligned reads to the annotated genome and carrying out an alignment-free transcript quantification using reads mapped to the transcriptome. Therefore, a broader range of piRNAs can be annotated, improving their quantification and easing the subsequent downstream analysis. WIND performance has been tested with several small RNA-seq datasets, demonstrating how our approach can be a useful and comprehensive resource to analyse piRNAs and other classes of sncRNAs.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1
Author(s):  
Konstantinos Geles ◽  
Domenico Palumbo ◽  
Assunta Sellitto ◽  
Giorgio Giurato ◽  
Eleonora Cianflone ◽  
...  

Current bioinformatics workflows for PIWI-interacting RNA (piRNA) analysis focus primarily on germline-derived piRNAs and piRNA-clusters. Frequently, they suffer from outdated piRNA databases, questionable quantification methods, and lack of reproducibility. Often, pipelines specific to miRNA analysis are used for the piRNA research in silico. Furthermore, the absence of a well-established database for piRNA annotation, as for miRNA, leads to uniformity issues between studies and generates confusion for data analysts and biologists. For these reasons, we have developed WIND (Workflow for pIRNAs aNd beyonD), a bioinformatics workflow that addresses the crucial issue of piRNA annotation, thereby allowing a reliable analysis of small RNA sequencing data for the identification of piRNAs and other small non-coding RNAs (sncRNAs) that in the past have been incorrectly classified as piRNAs. WIND allows the creation of a comprehensive annotation track of sncRNAs combining information available in RNAcentral, with piRNA sequences from piRNABank, the first database dedicated to piRNA annotation. WIND was built with Docker containers for reproducibility and integrates widely used bioinformatics tools for sequence alignment and quantification. In addition, it includes Bioconductor packages for exploratory data and differential expression analysis. Moreover, WIND implements a "dual" approach for the evaluation of sncRNAs expression level quantifying the aligned reads to the annotated genome and carrying out an alignment-free transcript quantification using reads mapped to the transcriptome. Therefore, a broader range of piRNAs can be annotated, improving their quantification and easing the subsequent downstream analysis. WIND performance has been tested with several small RNA-seq datasets, demonstrating how our approach can be a useful and comprehensive resource to analyse piRNAs and other classes of sncRNAs.


2020 ◽  
Vol 21 (5) ◽  
pp. 1754 ◽  
Author(s):  
Enrico Gaffo ◽  
Michele Bortolomeazzi ◽  
Andrea Bisognin ◽  
Piero Di Battista ◽  
Federica Lovisa ◽  
...  

MicroRNA-offset RNAs (moRNAs) are microRNA-like small RNAs generated by microRNA precursors. To date, little is known about moRNAs and bioinformatics tools to inspect their expression are still missing. We developed miR&moRe2, the first bioinformatics method to consistently characterize microRNAs, moRNAs, and their isoforms from small RNA sequencing data. To illustrate miR&moRe2 discovery power, we applied it to several published datasets. MoRNAs identified by miR&moRe2 were in agreement with previous research findings. Moreover, we observed that moRNAs and new microRNAs predicted by miR&moRe2 were downregulated upon the silencing of the microRNA-biogenesis pathway. Further, in a sizeable dataset of human blood cell populations, tens of novel miRNAs and moRNAs were discovered, some of them with significantly varied expression levels among the cell types. Results demonstrate that miR&moRe2 is a valid tool for a comprehensive study of small RNAs generated from microRNA precursors and could help to investigate their biogenesis and function.


2017 ◽  
Vol 3 (4) ◽  
pp. 186
Author(s):  
Redi Aditama ◽  
Zulfikar Achmad Tanjung ◽  
Widyartini Made Sudania ◽  
Toni Liwang

<p class="Els-Abstract-text">RNA-seq using the Next Generation Sequencing (NGS) approach is a common technology to analyze large-scale RNA transcript data for gene expression studies. However, an appropriate bioinformatics tool is needed to analyze a large amount of transcriptomes data from RNA-seq experiment. The aim of this study was to construct a system that can be easily applied to analyze RNA-seq data. RNA-seq analysis tool as SMART-RDA was constructed in this study. It is a computational workflow based on Galaxy framework to be used for analyzing RNA-seq raw data into gene expression information. This workflow was adapted from a well-known Tuxedo Protocol for RNA-seq analysis with some modifications. Expression value from each transcriptome was quantitatively stated as Fragments Per Kilobase of exon per Million fragments (FPKM). RNA-seq data of sterile and fertile oil palm (Pisifera) pollens derived from Sequence Read Archive (SRA) NCBI were used to test this workflow in local facility Galaxy server. The results showed that differentially gene expression in pollens might be responsible for sterile and fertile characteristics in palm oil Pisifera.</p><p><strong>Keywords:</strong> FPKM; Galaxy workflow; Gene expression; RNA sequencing.</p>


2018 ◽  
Author(s):  
Yu Fu ◽  
Pei-Hsuan Wu ◽  
Timothy Beane ◽  
Phillip D. Zamore ◽  
Zhiping Weng

AbstractRNA-seq and small RNA-seq are powerful, quantitative tools to study gene regulation and function. Common high-throughput sequencing methods rely on polymerase chain reaction (PCR) to expand the starting material, but not every molecule amplifies equally, causing some to be overrepresented. Unique molecular identifiers (UMIs) can be used to distinguish undesirable PCR duplicates derived from a single molecule and identical but biologically meaningful reads from different molecules. We have incorporated UMIs into RNA-seq and small RNA-seq protocols and developed tools to analyze the resulting data. Our UMIs contain stretches of random nucleotides whose lengths sufficiently capture diverse molecule species in both RNA-seq and small RNA-seq libraries generated from mouse testis. Our approach yields high-quality data while allowing unique tagging of all molecules in high-depth libraries. Using simulated and real datasets, we demonstrate that our methods increase the reproducibility of RNA-seq and small RNA-seq data. Notably, we find that the amount of starting material and sequencing depth, but not the number of PCR cycles, determine PCR duplicate frequency. Finally, we show that computational removal of PCR duplicates based only on their mapping coordinates introduces substantial bias into data analysis.


Author(s):  
Beth Signal ◽  
Tim Kahlke

ABSTRACTQuality control checks are the first step in RNA-Sequencing analysis, which enable the identification of common issues that occur in the sequenced reads. Checks for sequence quality, contamination, and complexity are commonplace, and allow users to implement steps downstream which can account for these issues. Strand-specificity of reads is frequently overlooked and is often unavailable even in published data, yet when unknown or incorrectly specified can have detrimental effects on the reproducibility and accuracy of downstream analyses. We present how_are_we_stranded_here, a Python library that helps to quickly infer strandedness of paired-end RNA-Sequencing data.


Sign in / Sign up

Export Citation Format

Share Document