scholarly journals Switches, stability and reversals: the evolutionary history of sexual systems in fish

2021 ◽  
Author(s):  
Susanna Pla ◽  
Chiara Benvenuto ◽  
Isabella Capellini ◽  
Francesc Piferrer

AbstractSexual systems are highly diverse and have profound consequences for population dynamics and resilience. Yet, little is known about how they evolved. Using phylogenetic Bayesian modelling on 4740 species, we show that gonochorism is the likely ancestral condition in teleost fish. While all hermaphroditic forms revert quickly to gonochorism, protogyny and simultaneous hermaphroditism are evolutionarily more stable than protandry. Importantly, simultaneous hermaphroditism can evolve directly from gonochorism, in contrast to theoretical expectations. We find support for predictions from life history theory that protogynous species live longer than gonochoristic species, are smaller than protandrous species, have males maturing later than protandrous males, and invest the least in male gonad mass. The large-scale distribution of sexual systems on the tree of life does not seem to reflect just adaptive predictions and thus does not fully explain why some sexual forms evolve in some taxa but not others (William’s paradox). We propose that future studies should take into account the diversity of sex determining mechanisms. Some of these might constrain the evolution of hermaphroditism, while the non-duality of the embryological origin of teleost gonads might explain why protogyny predominates over protandry in this extraordinarily diverse group of animals.

Genome ◽  
2017 ◽  
Vol 60 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Catherine E. Newman ◽  
T. Ryan Gregory ◽  
Christopher C. Austin

The genus Plethodon is the most species-rich salamander genus in North America, and nearly half of its species face an uncertain future. It is also one of the most diverse families in terms of genome sizes, which range from 1C = 18.2 to 69.3 pg, or 5–20 times larger than the human genome. Large genome size in salamanders results in part from accumulation of transposable elements and is associated with various developmental and physiological traits. However, genome sizes have been reported for only 25% of the species of Plethodon (14 of 55). We collected genome size data for Plethodon serratus to supplement an ongoing phylogeographic study, reconstructed the evolutionary history of genome size in Plethodontidae, and inferred probable genome sizes for the 41 species missing empirical data. Results revealed multiple genome size changes in Plethodon: genomes of western Plethodon increased, whereas genomes of eastern Plethodon decreased, followed by additional decreases or subsequent increases. The estimated genome size of P. serratus was 21 pg. New understanding of variation in genome size evolution, along with genome size inferences for previously unstudied taxa, provide a foundation for future studies on the biology of plethodontid salamanders.


IMA Fungus ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi Li ◽  
Lan Jiang ◽  
Ke Wang ◽  
Hai-Jun Wu ◽  
Rui-Heng Yang ◽  
...  

Abstract Different hypotheses have been proposed to interpret the observed unusual ITS (internal transcribed spacer) sequences in Ophiocordyceps sinensis. The coexistence of diverged ITS paralogs in a single genome was previously shown by amplifying the ITS region from mono-ascospore isolates using specific primers designed for different ITS paralog groups. Among those paralogs, are AT-biased ITS sequences which were hypothesized to result from repeat-induced point mutation (RIP). This is a process that detects and mutates repetitive DNA and frequently leads to epigenetic silencing, and these mutations have been interpreted as pseudogenes. Here we investigate the occurrence and frequency of ITS pseudogenes in populations of O. sinensis using large-scale sampling, and discusses the implications of ITS pseudogenes for fungal phylogenetic and evolutionary studies. Our results demonstrate a wide distribution of ITS pseudogenes amongst different geographic populations, and indicate how ITS pseudogenes can contribute to the reconstruction of the evolutionary history of the species.


2010 ◽  
Vol 29 (4) ◽  
pp. 945-950 ◽  
Author(s):  
Paolo Franchini ◽  
Ruhan Slabbert ◽  
Mathilde Van Der Merwe ◽  
Adelle Roux ◽  
Rouvay Roodt-Wilding

2011 ◽  
Vol 279 (1726) ◽  
pp. 3-14 ◽  
Author(s):  
Megan L. Porter ◽  
Joseph R. Blasic ◽  
Michael J. Bok ◽  
Evan G. Cameron ◽  
Thomas Pringle ◽  
...  

Opsin proteins are essential molecules in mediating the ability of animals to detect and use light for diverse biological functions. Therefore, understanding the evolutionary history of opsins is key to understanding the evolution of light detection and photoreception in animals. As genomic data have appeared and rapidly expanded in quantity, it has become possible to analyse opsins that functionally and histologically are less well characterized, and thus to examine opsin evolution strictly from a genetic perspective. We have incorporated these new data into a large-scale, genome-based analysis of opsin evolution. We use an extensive phylogeny of currently known opsin sequence diversity as a foundation for examining the evolutionary distributions of key functional features within the opsin clade. This new analysis illustrates the lability of opsin protein-expression patterns, site-specific functionality (i.e. counterion position) and G-protein binding interactions. Further, it demonstrates the limitations of current model organisms, and highlights the need for further characterization of many of the opsin sequence groups with unknown function.


2021 ◽  
Vol 118 (10) ◽  
pp. e2019865118
Author(s):  
Yilun Yu ◽  
Chi Zhang ◽  
Xing Xu

Reconstructing the history of biodiversity has been hindered by often-separate analyses of stem and crown groups of the clades in question that are not easily understood within the same unified evolutionary framework. Here, we investigate the evolutionary history of birds by analyzing three supertrees that combine published phylogenies of both stem and crown birds. Our analyses reveal three distinct large-scale increases in the diversification rate across bird evolutionary history. The first increase, which began between 160 and 170 Ma and reached its peak between 130 and 135 Ma, corresponds to an accelerated morphological evolutionary rate associated with the locomotory systems among early stem birds. This radiation resulted in morphospace occupation that is larger and different from their close dinosaurian relatives, demonstrating the occurrence of a radiation among early stem birds. The second increase, which started ∼90 Ma and reached its peak between 65 and 55 Ma, is associated with rapid evolution of the cranial skeleton among early crown birds, driven differently from the first radiation. The third increase, which occurred after ∼40 to 45 Ma, has yet to be supported by quantitative morphological data but gains some support from the fossil record. Our analyses indicate that the bird biodiversity evolution was influenced mainly by long-term climatic changes and also by major paleobiological events such as the Cretaceous–Paleogene (K–Pg) extinction.


2020 ◽  
Vol 165 (11) ◽  
pp. 2599-2603
Author(s):  
Mi-ran Yun ◽  
Jungsang Ryou ◽  
Wooyoung Choi ◽  
Joo-Yeon Lee ◽  
Sun-Whan Park ◽  
...  

AbstractSevere fever with thrombocytopenia syndrome (SFTS) is caused by SFTS virus (SFTSV). Although SFTS originated in China, it is an emerging infectious disease with prevalence confirmed in Japan, Korea, and Vietnam. The full-length genomes of 51 Korean SFTSV isolates from 2013 to 2016 were sequenced, and the sequences were deposited into a public database (GenBank) and analyzed to elucidate the phylogeny and evolution of the virus. Although most of the Korean SFTSV isolates were closely related to previously reported Japanese isolates, some were closely related to previously reported Chinese isolates. We identified one Korean strain that appears to have resulted from multiple inter-lineage reassortments. Several nucleotide and amino acid variations specific to the Korean isolates were identified. Future studies should focus on how these variations affect virus pathogenicity and evolution.


2019 ◽  
Vol 94 (Suppl. 1-4) ◽  
pp. 37-50 ◽  
Author(s):  
Michael L. Kelly ◽  
Shaun P. Collin ◽  
Jan M. Hemmi ◽  
John A. Lesku

Sleep is widespread across the animal kingdom. However, most comparative sleep data exist for terrestrial vertebrates, with much less known about sleep in amphibians, bony fishes, and invertebrates. There is an absence of knowledge on sleep in cartilaginous fishes. Sharks and rays are amongst the earliest vertebrates, and may hold clues to the evolutionary history of sleep and sleep states found in more derived animals, such as mammals and birds. Here, we review the literature concerning activity patterns, sleep behaviour, and electrophysiological evidence for sleep in cartilaginous (and bony) fishes following an exhaustive literature search that found more than 80 relevant studies in laboratory and field environments. Evidence for sleep in sharks and rays that respire without swimming is preliminary; evidence for sleep in continuously swimming fishes is currently absent. We discuss ways in which the latter group might sleep concurrent with sustained movement, and conclude with suggestions for future studies in order to provide more comprehensive data on when, how, and why sharks and rays sleep.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 182 ◽  
Author(s):  
Ivete Maquia ◽  
Silvia Catarino ◽  
Ana R. Pena ◽  
Denise R.A. Brito ◽  
Natasha. S. Ribeiro ◽  
...  

The southern African Miombo and Mopane ecoregions constitute a unique repository of plant diversity whose diversification and evolutionary history is still understudied. In this work, we assessed the diversity, distribution, and conservation status of Miombo and Mopane tree legumes within the Zambezian phytoregion. Data were retrieved from several plant and gene databases and phylogenetic analyses were performed based on genetic barcodes. Seventy-eight species (74 from Miombo and 23 from Mopane, 19 common to both ecoregions) have been scored. Species diversity was high within both ecoregions, but information about the actual conservation status is scarce and available only for ca. 15% of the species. Results of phylogenetic analyses were consistent with current legume classification but did not allow us to draw any conclusion regarding the evolutionary history of Miombo and Mopane tree legumes. Future studies are proposed to dissect the diversity and structure of key species in order to consolidate the network of conservation areas.


Zootaxa ◽  
2019 ◽  
Vol 2713 (1) ◽  
pp. 52 ◽  
Author(s):  
BASTIAN BENTLAGE

Numerous nominal species have been considered synonymous with Carybdea alata Reynaud, 1830 (cf. Gershwin 2005). A recent revision concluded that several of the species collectively referred to as C. alata are valid and indeed separate species (Gershwin 2005; but see also Bentlage et al. 2010). Additionally, these species (including C. alata) were moved into the genus Alatina Gershwin 2005 (family Alatinidae Gershwin, 2005) because of stark morphological differences they display compared to the other species of Carybdea. In particular, Alatina species possess crescentic phacellae and a rhopaliar niche ostium that is covered by a single upper and two lateral scales (t-shaped sensu Gershwin 2005; cf. Bigelow 1938) compared to a single upper covering scale (heart-shaped sensu Gershwin 2005; cf. Bigelow 1938) and epaulette-like or linear phacellae in the corners of the stomach in Carybdea species. Recent molecular phylogenetic analyses support the separation of Carybdea and Alatina (Bentlage et al. 2010). Alatina grandis posed a problem in Gershwin's (2005) revision, as the type of this species appeared to be lost to science, preventing a closer investigation of its identity. I located a type specimen of the species in the collections of the National Museum of Natural History, Smithsonian Institution (USNM). The purpose of this letter is to draw attention to this important specimen, and highlight directions for future studies on the evolutionary history of the genus Alatina.


Sign in / Sign up

Export Citation Format

Share Document