scholarly journals Phenotypic plasticity is aligned with phenological adaptation on micro- and macroevolutionary timescales

2021 ◽  
Author(s):  
Stephen P. De Lisle ◽  
Maarit I. Mäenpää ◽  
Erik I. Svensson

AbstractPhenology is a key determinant of fitness, particularly in organisms with complex life cycles with dramatic transitions from an aquatic to a terrestrial life stage. Because optimum phenology is influenced by local environmental conditions, particularly temperature, phenotypic plasticity could play an important role in adaptation to seasonally variable environments. Here, we used a 18-generation longitudinal field dataset from a wild insect (the damselfly Ischnura elegans) and show that phenology has strongly advanced, coinciding with increasing temperatures in northern Europe. Using individual fitness data, we show this advancement is most likely an adaptive response towards a thermally-dependent moving fitness optimum. These field data were complemented with a laboratory experiment, revealing that developmental plasticity to temperature quantitatively matches the environmental dependence of selection and can explain the observed phenological advance. We expand the analysis to the macroevolutionary level, using a public database of over 1 million occurrence records on the phenology of Swedish damselfly and dragonfly species. Combining spatiotemporally matched temperature data and phylogenetic information, we estimated the phenological reaction norms towards temperature for 49 Swedish species. We show that thermal plasticity in phenology is more closely aligned with local adaptation for odonate species that have recently colonized northern latitudes, whereas there is more mismatch at lower latitudes. Our results show that phenological plasticity plays a key role in microevolutionary adaptation within in a single species, and also suggest that such plasticity may have facilitated post-Pleistocene range expansion at the macroevolutionary scale in this insect clade.Impact StatementOrganisms with complex life cycles must time their life-history transitions to match environmental conditions favorable to survival and reproduction. The timing of these transitions – phenology – is therefore of critical importance, and phenology a key trait in adaptive responses to climate change. Here, we use field data from a single species and phylogenetic comparative from over 1 million individual damselfly and dragonfly records to show that plasticity in phenology underlies adaptation at both the microevolutionary scale (across generations in a single species) and the macroevolutionary scale (across deep time in a clade). Our results indicates that phenotypic plasticity has the potential to explain variation in phenology and adaptive response to climate change across disparate evolutionary time scales.

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 892
Author(s):  
Valda Gudynaitė-Franckevičienė ◽  
Alfas Pliūra

To have a cleaner environment, good well-being, and improve the health of citizens it is necessary to expand green urban and suburban areas using productive and adapted material of tree species. The quality of urban greenery, resistance to negative climate change factors and pollution, as well as efficiency of short-rotation forestry in suburban areas, depends primarily on the selection of hybrids and clones, suitable for the local environmental conditions. We postulate that ecogenetic response, phenotypic plasticity, and genotypic variation of hybrid poplars (Populus L.) grown in plantations are affected not only by the peculiarities of hybrids and clones, but also by environmental conditions of their vegetative propagation. The aim of the present study was to estimate growth and biochemical responses, the phenotypic plasticity, genotypic variation of adaptive traits, and genetically regulated adaptability of Populus hybrids in field trials which may be predisposed by the simulated contrasting temperature conditions at their vegetative propagation phase. The research was performed with the 20 cultivars and experimental clones of one intraspecific cross and four different interspecific hybrids of poplars propagated under six contrasting temperature regimes in phytotron. The results suggest that certain environmental conditions during vegetative propagation not only have a short-term effect on tree viability and growth, but also can help to adapt to climate change conditions and grow successfully in the long-term. It was found that tree growth and biochemical traits (the chlorophyll A and B, pigments content and the chlorophyll A/B ratio) of hybrid poplar clones grown in field trials, as well as their traits’ genetic parameters, were affected by the rooting-growing conditions during vegetative propagation phase. Hybrids P. balsamifera × P. trichocarpa, and P. trichocarpa × P. trichocarpa have shown the most substantial changes of biochemical traits across vegetative propagation treatments in field trial. Rooting-growing conditions during vegetative propagation had also an impact on coefficients of genotypic variation and heritability in hybrid poplar clones when grown in field trials.


2012 ◽  
Vol 22 (2) ◽  
pp. 121-139 ◽  
Author(s):  
Pierre Petitgas ◽  
Adriaan D. Rijnsdorp ◽  
Mark Dickey-Collas ◽  
Georg H. Engelhard ◽  
Myron A. Peck ◽  
...  

EvoDevo ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joachim M. Surm ◽  
Yehu Moran

AbstractVenomous animals are a striking example of the convergent evolution of a complex trait. These animals have independently evolved an apparatus that synthesizes, stores, and secretes a mixture of toxic compounds to the target animal through the infliction of a wound. Among these distantly related animals, some can modulate and compartmentalize functionally distinct venoms related to predation and defense. A process to separate distinct venoms can occur within and across complex life cycles as well as more streamlined ontogenies, depending on their life-history requirements. Moreover, the morphological and cellular complexity of the venom apparatus likely facilitates the functional diversity of venom deployed within a given life stage. Intersexual variation of venoms has also evolved further contributing to the massive diversity of toxic compounds characterized in these animals. These changes in the biochemical phenotype of venom can directly affect the fitness of these animals, having important implications in their diet, behavior, and mating biology. In this review, we explore the current literature that is unraveling the temporal dynamics of the venom system that are required by these animals to meet their ecological functions. These recent findings have important consequences in understanding the evolution and development of a convergent complex trait and its organismal and ecological implications.


2011 ◽  
Vol 8 (2) ◽  
pp. 164-166 ◽  
Author(s):  
Bayden D. Russell ◽  
Christopher D. G. Harley ◽  
Thomas Wernberg ◽  
Nova Mieszkowska ◽  
Stephen Widdicombe ◽  
...  

Most studies that forecast the ecological consequences of climate change target a single species and a single life stage. Depending on climatic impacts on other life stages and on interacting species, however, the results from simple experiments may not translate into accurate predictions of future ecological change. Research needs to move beyond simple experimental studies and environmental envelope projections for single species towards identifying where ecosystem change is likely to occur and the drivers for this change. For this to happen, we advocate research directions that (i) identify the critical species within the target ecosystem, and the life stage(s) most susceptible to changing conditions and (ii) the key interactions between these species and components of their broader ecosystem. A combined approach using macroecology, experimentally derived data and modelling that incorporates energy budgets in life cycle models may identify critical abiotic conditions that disproportionately alter important ecological processes under forecasted climates.


2017 ◽  
Vol 4 (1) ◽  
pp. 160535 ◽  
Author(s):  
Carrie A. Cizauskas ◽  
Colin J. Carlson ◽  
Kevin R. Burgio ◽  
Chris F. Clements ◽  
Eric R. Dougherty ◽  
...  

Despite the number of virulent pathogens that are projected to benefit from global change and to spread in the next century, we suggest that a combination of coextinction risk and climate sensitivity could make parasites at least as extinction prone as any other trophic group. However, the existing interdisciplinary toolbox for identifying species threatened by climate change is inadequate or inappropriate when considering parasites as conservation targets. A functional trait approach can be used to connect parasites' ecological role to their risk of disappearance, but this is complicated by the taxonomic and functional diversity of many parasite clades. Here, we propose biological traits that may render parasite species particularly vulnerable to extinction (including high host specificity, complex life cycles and narrow climatic tolerance), and identify critical gaps in our knowledge of parasite biology and ecology. By doing so, we provide criteria to identify vulnerable parasite species and triage parasite conservation efforts.


2010 ◽  
Vol 365 (1540) ◽  
pp. 631-640 ◽  
Author(s):  
Alessandro Minelli ◽  
Giuseppe Fusco

Metazoan life cycles can be complex in different ways. A number of diverse phenotypes and reproductive events can sequentially occur along the cycle, and at certain stages a variety of developmental and reproductive options can be available to the animal, the choice among which depends on a combination of organismal and environmental conditions. We hypothesize that a diversity of phenotypes arranged in developmental sequence throughout an animal's life cycle may have evolved by genetic assimilation of alternative phenotypes originally triggered by environmental cues. This is supported by similarities between the developmental mechanisms mediating phenotype change and alternative phenotype determination during ontogeny and the common ecological condition that favour both forms of phenotypic variation. The comparison of transcription profiles from different developmental stages throughout a complex life cycle with those from alternative phenotypes in closely related polyphenic animals is expected to offer critical evidence upon which to evaluate our hypothesis.


2010 ◽  
Vol 365 (1540) ◽  
pp. 547-556 ◽  
Author(s):  
Giuseppe Fusco ◽  
Alessandro Minelli

This theme issue pursues an exploration of the potential of taking into account the environmental sensitivity of development to explaining the evolution of metazoan life cycles, with special focus on complex life cycles and the role of developmental plasticity. The evolution of switches between alternative phenotypes as a response to different environmental cues and the evolution of the control of the temporal expression of alternative phenotypes within an organism's life cycle are here treated together as different dimensions of the complex relationships between genotype and phenotype, fostering the emergence of a more general and comprehensive picture of phenotypic evolution through a quite diverse sample of case studies. This introductory article reviews fundamental facts and concepts about phenotypic plasticity, adopting the most authoritative terminology in use in the current literature. The main topics are types and components of phenotypic variation, the evolution of organismal traits through plasticity, the origin and evolution of phenotypic plasticity and its adaptive value.


2021 ◽  
Vol 28 (1) ◽  
pp. 277-287
Author(s):  
M Khairul Alam

The history of biosystematics research and its impacts on climate goes before political ramifications. Climate change is altering the environments and likely to result in changes in the distribution of species, flowering times; migrate and adapt to the new environmental conditions; or extinction. Adaptive capacity is the ability of the plants to adapt to the impacts of climate change. Adaptation process is going in nature through phenotypic plasticity, natural selection or migration or polyploidization. The options are not mutually exclusive. Phenotypic plasticity may be the most efficient way of adaptation to a new environment. Polyploidization may increase tolerance to diverse ecological conditions and the high incidence of polyploidy in plants indicates its adaptive significance. Population having polyploid pillar complex is a good backup support towards microevolution and speciation, a mode of adaptation. The paper discusses about these biosystematics approaches towards adaptation to new environmental conditions resulting from climate change. It also discusses about the role of taxonomists under the changed circumstances. It is evident from the review that a set of biosystematics data along with other ecological and conservation information needs to be included in Flora and Monographs. It reveals that it was as far as worked out at the Paris Botanical Congress 1954 and put up by Stebbins in a series of proposals, termed as “Stebbins’ Ten Points” that needs further enrichment. Bangladesh J. Plant Taxon. 28(1): 277-287, 2021 (June)


Sign in / Sign up

Export Citation Format

Share Document