scholarly journals The SARS-CoV-2 Y453F mink variant displays a striking increase in ACE-2 affinity but does not challenge antibody neutralization

2021 ◽  
Author(s):  
Rafael Bayarri-Olmos ◽  
Anne Rosbjerg ◽  
Laust Bruun Johnsen ◽  
Charlotte Helgstrand ◽  
Theresa Bak-Thomsen ◽  
...  

AbstractSARS-CoV-2 transmission from humans to animals has been reported for many domesticated species, including cats, dogs and minks. Identification of novel spike gene mutations appearing in minks has raised major concerns about potential immune evasion and challenges for the global vaccine strategy. The genetic variant, known as “cluster-five”, arose among farmed minks in Denmark and resulted in a complete shutdown of the world’s largest mink production. However, the functional properties of this new variant are not established. Here we present functional data on the Y453F cluster-five receptor-binding domain (RBD) and show that it does not decrease established humoral immunity or affect the neutralizing response in a vaccine model based on wild-type RBD or spike. However, it binds the human ACE-2 receptor with a four-fold higher affinity suggesting an enhanced transmission capacity and a possible challenge for viral control.

2022 ◽  
Author(s):  
Wentai Ma ◽  
Jing Yang ◽  
Haoyi Fu ◽  
Chao Su ◽  
Caixia Yu ◽  
...  

A new variant of concern for SARS-CoV-2, Omicron (B.1.1.529), was designated by the World Health Organization on November 26, 2021. This study analyzed the viral genome sequencing data of 108 samples collected from patients infected with Omicron. First, we found that the enrichment efficiency of viral nucleic acids was reduced due to mutations in the region where the primers anneal to. Second, the Omicron variant possesses an excessive number of mutations compared to other variants circulating at the same time (62 vs. 45), especially in the Spike gene. Mutations in the Spike gene confer alterations in 32 amino acid residues, which was more than those observed in other SARS-CoV-2 variants. Moreover, a large number of nonsynonymous mutations occur in the codons for the amino acid residues located on the surface of the Spike protein, which could potentially affect the replication, infectivity, and antigenicity of SARS-CoV-2. Third, there are 53 mutations between the Omicron variant and its closest sequences available in public databases. Many of those mutations were rarely observed in the public database and had a low mutation rate. In addition, the linkage disequilibrium between these mutations was low, with a limited number of mutations (6) concurrently observed in the same genome, suggesting that the Omicron variant would be in a different evolutionary branch from the currently prevalent variants. To improve our ability to detect and track the source of new variants rapidly, it is imperative to further strengthen genomic surveillance and data sharing globally in a timely manner.


2009 ◽  
Vol 54 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Hassan Safi ◽  
Robert D. Fleischmann ◽  
Scott N. Peterson ◽  
Marcus B. Jones ◽  
Behnam Jarrahi ◽  
...  

ABSTRACT Mutations within codon 306 of the Mycobacterium tuberculosis embB gene modestly increase ethambutol (EMB) MICs. To identify other causes of EMB resistance and to identify causes of high-level resistance, we generated EMB-resistant M. tuberculosis isolates in vitro and performed allelic exchange studies of embB codon 406 (embB406) and embB497 mutations. In vitro selection produced mutations already identified clinically in embB306, embB397, embB497, embB1024, and embC13, which result in EMB MICs of 8 or 14 μg/ml, 5 μg/ml, 12 μg/ml, 3 μg/ml, and 4 μg/ml, respectively, and mutations at embB320, embB324, and embB445, which have not been identified in clinical M. tuberculosis isolates and which result in EMB MICs of 8 μg/ml, 8 μg/ml, and 2 to 8 μg/ml, respectively. To definitively identify the effect of the common clinical embB497 and embB406 mutations on EMB susceptibility, we created a series of isogenic mutants, exchanging the wild-type embB497 CAG codon in EMB-susceptible M. tuberculosis strain 210 for the embB497 CGG codon and the wild-type embB406 GGC codon for either the embB406 GCC, embB406 TGC, embB406 TCC, or embB406 GAC codon. These new mutants showed 6-fold and 3- to 3.5-fold increases in the EMB MICs, respectively. In contrast to the embB306 mutants, the isogenic embB497 and embB406 mutants did not have preferential growth in the presence of isoniazid or rifampin (rifampicin) at their MICs. These results demonstrate that individual embCAB mutations confer low to moderate increases in EMB MICs. Discrepancies between the EMB MICs of laboratory mutants and clinical M. tuberculosis strains with identical mutations suggest that clinical EMB resistance is multigenic and that high-level EMB resistance requires mutations in currently unknown loci.


2020 ◽  
Author(s):  
Jens Schittenhelm ◽  
Lukas Ziegler ◽  
Jan Sperveslage ◽  
Michel Mittelbronn ◽  
David Capper ◽  
...  

Abstract Background Fibroblast growth factor receptor (FGFR) inhibitors are currently used in clinical development. A subset of glioblastomas carries gene fusion of FGFR3 and transforming acidic coiled-coil protein 3. The prevalence of other FGFR3 alterations in glioma is currently unclear. Methods We performed RT-PCR in 101 glioblastoma samples to detect FGFR3-TACC3 fusions (“RT-PCR cohort”) and correlated results with FGFR3 immunohistochemistry (IHC). Further, we applied FGFR3 IHC in 552 tissue microarray glioma samples (“TMA cohort”) and validated these results in two external cohorts with 319 patients. Gene panel sequencing was carried out in 88 samples (“NGS cohort”) to identify other possible FGFR3 alterations. Molecular modeling was performed on newly detected mutations. Results In the “RT-PCR cohort,” we identified FGFR3-TACC3 fusions in 2/101 glioblastomas. Positive IHC staining was observed in 73/1024 tumor samples of which 10 were strongly positive. In the “NGS cohort,” we identified FGFR3 fusions in 9/88 cases, FGFR3 amplification in 2/88 cases, and FGFR3 gene mutations in 7/88 cases in targeted sequencing. All FGFR3 fusions and amplifications and a novel FGFR3 K649R missense mutation were associated with FGFR3 overexpression (sensitivity and specificity of 93% and 95%, respectively, at cutoff IHC score > 7). Modeling of these data indicated that Tyr647, a residue phosphorylated as a part of FGFR3 activation, is affected by the K649R mutation. Conclusions FGFR3 IHC is a useful screening tool for the detection of FGFR3 alterations and could be included in the workflow for isocitrate dehydrogenase (IDH) wild-type glioma diagnostics. Samples with positive FGFR3 staining could then be selected for NGS-based diagnostic tools.


1998 ◽  
Vol 42 (7) ◽  
pp. 1811-1814 ◽  
Author(s):  
Leonardo K. Basco ◽  
Rachida Tahar ◽  
Pascal Ringwald

ABSTRACT In vitro sulfadoxine and pyrimethamine resistance has been associated with point mutations in the dihydropteroate synthase and dihydrofolate reductase domains, respectively, but the in vivo relevance of these point mutations has not been well established. To analyze the correlation between genotype and phenotype, 10 Cameroonian adult patients were treated with sulfadoxine-pyrimethamine and followed up for 28 days. After losses to follow-up (n = 1) or elimination of DNA samples due to mixed parasite populations with pyrimethamine-sensitive and pyrimethamine-resistant profiles (n = 3), parasite genomic DNA from day 0 blood samples of six patients were analyzed by DNA sequencing. Three patients who were cured had isolates characterized by a wild-type or mutant dihydrofolate reductase gene (with one or two mutations) and a wild-type dihydropteroate synthase gene. Three other patients who failed to respond to sulfadoxine-pyrimethamine treatment carried isolates with triple dihydrofolate reductase gene mutations and either a wild-type or a mutant dihydropteroate synthase gene. Three dihydrofolate reductase gene codons (51, 59, and 108) may be reliable genetic markers that can accurately predict the clinical outcome of sulfadoxine-pyrimethamine treatment in Africa.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1414-1414
Author(s):  
Fernando Carazo ◽  
Edurne San Jose ◽  
Leire Garate ◽  
Estibaliz Miranda ◽  
Ana Alfonso Pierola ◽  
...  

Acute myeloid leukemia (AML) is a hematologic neoplasm characterized by a remarkable phenotypic and genomic heterogeneity. The recent characterization of genomic subtypes of AML based on large sequencing studies has provided the rationale for the development of targeted therapies based on the presence of specific genomic abnormalities. However, long term survival particularly in older patients remains a unmet medicalneed. Additionally, recent studies using RNA interference (RNAi) libraries have determined the existence of genes that are essential for the survival of multiple cancer cells. Understanding the effect of genomic alterations (mutations, deletions, translocations) on gene essentiality could favor the development of targeted therapies for specific subgroups of AML patients. However, current statistical methods such as the Benjamini-Hochberg (BH) procedure have shown limitations for controlling the false discovery rate (FDR) and have suboptimal sensitivity (recall of true positives) because the P-value correction does not include any prior information of individual tests. For this reason, in this study we developed a new large-scale statistical algorithm, which combine the RNAi libraries (more than 17.000 genes) data with mutational profiles, to identify gene essentialities associated with specific genomic mutations in order to explore this approach in AML. We adapted the Independent Hypothesis Weighting (IHW) procedure to the problem of identifying mutations as surrogate markers of gene essentiality, by using the gene mutation state in each cell line as prior information of a IHW problem. This approach was tested in 19 tumor subtypes, of the Cancer Cell Line Encyclopedia (CCLE) showing that it recalls new discoveries that cannot be identified with standard procedures in 17 out of 19 tumors, including the identification of up to 1,000 discoveries in tumor types in which BH recalls no discovery. These results demonstrated the accuracy of the IHW-based approach to identify gene mutations as surrogate markers of gene essentiality in the future. Once validated, we applied this computational model to the15 AMLcell lines of CCLE. The number of discoveries with an FDR of 20% increases from 2 (using the traditional BH correction), to 38 using our procedure, showing NRAS as the top mutation biomarker in the ranking. Interestingly, the algorithm identified one essential gene (NRAS) for NRAS mutated (NRAS-mut) and another essential gene (PTPN11) for NRAS wild type (NRAS-wt) AML cells, covering all samples of AMLs. To validate this hypothesis, we examined the effect of two different specific siRNAs for each gene (siPTPN11 and siNRAS) on cell proliferation of four AML cell lines: two lines with NRAS-mut (HL-60 and OCIAML3) and two with NRAS-wt (MV4-11 and HEL). Downregulation of NRAS expression significantly decreases the cell proliferation only in the 2 NRAS-mutated AML cell lines. Whereas the inhibition of PTPN11expression produced an equivalent effect, but specifically in the 2 NRAS-wt AML cell lines (Figure 1). These results confirmed our predictions and showed the essential role of NRAS or PTNPN11 in AML cell lines either with NRAS mutated or wild type, respectively. These results demonstrate that the application of our algorithm in the context of specific gene mutation not only may allow identification of directed therapies based on the mutation but can also define new gene essentialities amenable for targeted therapies providing new therapeutic strategies in patients with AML and potentially in other tumors. Disclosures Paiva: Amgen, Bristol-Myers Squibb, Celgene, Janssen, Merck, Novartis, Roche and Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene, Janssen, Sanofi and Takeda: Consultancy. San-Miguel:Amgen, Bristol-Myers Squibb, Celgene, Janssen, MSD, Novartis, Roche, Sanofi, and Takeda: Consultancy, Honoraria.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Hiroaki Nozaki ◽  
Taisuke Kato ◽  
Megumi Nihonmatsu ◽  
Yohei Saito ◽  
Ikuko Mizuta ◽  
...  

Introduction: Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), an autosomal recessive inherited cerebral small vessel disease (CSVD), involves severe leukoaraiosis, multiple lacunar infarcts, early-onset alopecia, and spondylosis deformans. High-temperature requirement serine peptidase A1 (HTRA1) gene mutations cause CARASIL by decreasing HTRA1 protease activity. Although CARASIL is a recessive inherited disease, heterozygous mutations in the HTRA1 gene were recently identified in 11 families with CSVD. Because CSVD is frequently observed in elderly individuals, it is unclear which mutants truly contribute to CSVD pathogenesis. Here, we found heterozygous mutations in the HTRA1 gene in individuals with CSVD and investigated the differences in biochemical characteristics between these mutant HTRA1s and mutant HTRA1s observed in homozygotes. Methods: We recruited 113 unrelated index patients with clinically diagnosed CSVD. The coding sequences of the HTRA1 gene were analyzed. We evaluated HTRA1 protease activities using casein assays and oligomeric HTRA1 formation using gel filtration chromatography. Results: We found 4 heterozygous missense mutations in the HTRA1 gene (p.G283E, p.P285L, p.R302Q, and p.T319I) in 6 patients from 113 unrelated index patients and in 2 siblings in 2 unrelated families with p.R302Q. These mutant HTRA1s showed markedly decreased protease activities and inhibited wild-type HTRA1 activity, whereas 2 of 3 mutant HTRA1s reported in CARASIL (A252T and V297M) did not inhibit wild- type HTRA1 activity. Wild-type HTRA1 forms trimers; however, G283E and T319I HTRA1, observed in manifesting heterozygotes, did not form trimers. P285L and R302Q HTRA1s formed trimers, but their mutations were located in domains that are important for trimer-associated HTRA1 activation; in contrast, A252T and V297M HTRA1s, which have been observed in CARASIL, also formed trimers but had mutations outside the domains important for trimer- associated HTRA1 activation. Conclusions: The mutant HTRA1s observed in manifesting heterozygotes might result in an impaired HTRA1 activation cascade of HTRA1 or be unable to form stable trimers.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Huinan Wang ◽  
Libo Zhang ◽  
Yuanbin Shang ◽  
Rongrong Tan ◽  
Mingxiang Ji ◽  
...  

Abstract Outbreaks of a new variant of porcine epidemic diarrhea virus (PEDV) at the end of 2010 have raised interest in the mutation and recombination of PEDV. A PEDV strain (CN/Liaoning25/2018) isolated from a clinical outbreak of piglet diarrhea contained a 49-bp deletion in the ORF3 gene. This deletion is considered a genetic characteristic of low pathogenic attenuated vaccine strains. However, CN/Liaoning25/2018 was highly pathogenic. Complete genome sequencing, identity analysis, phylogenetic tree construction, and recombination analysis showed that this virus was a recombinant strain containing the Spike (S) gene from the highly pathogenic CN/GDZQ/2014 strain and the remaining genomic regions from the low pathogenic vaccine isolate SQ2014. Histopathology and immunohistochemistry results confirmed that this strain was highly pathogenic and indicated that intestinal epithelial cell vacuolation was positively correlated with the intensity and density of PEDV antigens. A new natural recombination model for PEDV was identified. Our results suggest that new highly pathogenic recombinant strains in the field may be generated by recombination between low pathogenic attenuated live PEDV vaccines and pathogenic circulating PEDV strains. Our findings also highlight that the 49-bp deletion of the ORF3 gene in low pathogenic attenuated vaccine strains will no longer be a reliable standard to differentiate the classical vaccine attenuated from the field strains.


2019 ◽  
Vol 103 (1-2) ◽  
pp. 27-35 ◽  
Author(s):  
Chu-Cheng Chang ◽  
Jen-Kou Lin ◽  
Tzu-Chen Lin ◽  
Wei-Shone Chen ◽  
Jeng-Kai Jiang ◽  
...  

Objective: Mutation spectra in colorectal cancer with metastasis and its response to chemotherapy. Summary of Background Data: No molecular markers are available for selecting the optimal chemotherapeutic regimen (irinotecan or oxaliplatin) for metastatic colorectal cancer (mCRC). Methods: We enrolled 161 mCRC patients who underwent surgery for their primary tumors at Taipei Veterans General Hospital from 2004 to 2010. The prevalence of gene mutations was measured and correlated with responses to different cytotoxic agents. Results: We detected 1,836 mutations in 12 genes. KRAS mutants affected 44.3% of the tumors. The rate of good response was insignificantly higher for patients with KRAS mutant tumors who received oxaliplatin-based chemotherapy compared with patients with KRAS wild-type tumors (65.6% versus 47.0%; P = 0.15). For patients who received irinotecan-based chemotherapy, the rate of good response was similar in patients with wild-type (55.0%; n = 11) and those with KRAS mutant tumors (54.5%; n = 12; P = 1). In patients with KRAS mutant tumors treated with an oxaliplatin-based regimen, the overall survival was 38.5 months (95% CI: 26.6–50.5 months), which was insignificantly better than that for patients treated with an irinotecan-based regimen (30.4 months; 95% CI: 15.8–45.1 months; P = 0.206). Conclusions: Our data could not come to the conclusion that patient with KRAS mutation mCRC may have better response with oxaliplatin-based first-line chemotherapy. Further study is needed to confirm the relationship between gene mutation and chemotherapy response.


2020 ◽  
pp. 105566562096269
Author(s):  
Jinsil Park ◽  
Mitsushiro Nakatomi ◽  
Masaaki Sasaguri ◽  
Manabu Habu ◽  
Osamu Takahashi ◽  
...  

Objective: Cleft palate is among the most frequent congenital defects in humans. While gene–environment multifactorial threshold models have been proposed to explain this cleft palate formation, only a few experimental models have verified this theory. This study aimed to clarify whether gene–environment interaction can cause cleft palate through a combination of specific genetic and environmental factors. Methods: Msx1 heterozygosity in mice ( Msx1+/−) was selected as a genetic factor since human MSX1 gene mutations may cause nonsyndromic cleft palate. As an environmental factor, hypoxic stress was induced in pregnant mice by administration of the antiepileptic drug phenytoin, a known arrhythmia inducer, during palatal development from embryonic day (E) 11 to E14. Embryos were dissected at E13 for histological analysis or at E17 for recording of the palatal state. Results: Phenytoin administration downregulated cell proliferation in palatal processes in both wild-type and Msx1+/− embryos. Bone morphogenetic protein 4 ( Bmp4) expression was slightly downregulated in the anterior palatal process of Msx1+/− embryos. Although Msx1+/− embryos do not show cleft palate under normal conditions, phenytoin administration induced a significantly higher incidence of cleft palate in Msx1+/− embryos compared to wild-type littermates. Conclusion: Our data suggest that cleft palate may occur because of the additive effects of Bmp4 downregulation as a result of Msx1 heterozygosity and decreased cell proliferation upon hypoxic stress. Human carriers of MSX1 mutations may have to take more precautions during pregnancy to avoid exposure to environmental risks.


2007 ◽  
Vol 189 (7) ◽  
pp. 2873-2885 ◽  
Author(s):  
Yuqing Tian ◽  
Kay Fowler ◽  
Kim Findlay ◽  
Huarong Tan ◽  
Keith F. Chater

ABSTRACT WhiI, a regulator required for efficient sporulation septation in the aerial mycelium of Streptomyces coelicolor, resembles response regulators of bacterial two-component systems but lacks some conserved features of typical phosphorylation pockets. Four amino acids of the abnormal “phosphorylation pocket” were changed by site-directed mutagenesis. Unlike whiI null mutations, these point mutations did not interfere with sporulation septation but had various effects on spore maturation. Transcriptome analysis was used to compare gene expression in the wild-type strain, a D27A mutant (pale gray spores), a D69E mutant (wild-type spores), and a null mutant (white aerial mycelium, no spores) (a new variant of PCR targeting was used to introduce the point mutations into the chromosomal copy of whiI). The results revealed 45 genes that were affected by the deletion of whiI. Many of these showed increased expression in the wild type at the time when aerial growth and development were taking place. About half of them showed reduced expression in the null mutant, and about half showed increased expression. Some, but not all, of these 45 genes were also affected by the D27A mutation, and a few were affected by the D69E mutation. The results were consistent with a model in which WhiI acts differently at sequential stages of development. Consideration of the functions of whiI-influenced genes provides some insights into the physiology of aerial hyphae. Mutation of seven whiI-influenced genes revealed that three of them play roles in spore maturation.


Sign in / Sign up

Export Citation Format

Share Document