scholarly journals Multi-specific DARPin® therapeutics demonstrate very high potency against mutated SARS-CoV-2 variants in vitro

2021 ◽  
Author(s):  
Sylvia Rothenberger ◽  
Marcel Walser ◽  
Francesca Malvezzi ◽  
Jennifer Mayor ◽  
Sarah Ryter ◽  
...  

AbstractThe SARS-CoV-2 virus responsible for the COVID-19 pandemic has so far infected more than 100 million people globally, and continues to undergo genomic evolution. Emerging SARS-CoV-2 variants show increased infectivity and may lead to resistance against immune responses of previously immunized individuals or existing therapeutics, especially antibody-based therapies.Several monoclonal antibody therapeutics authorized for emergency use or in development start to lose potency against various SARS-CoV-2 variants. Cocktails of two different monoclonal antibodies constitute a promising approach to protect against such variants as long as both antibodies are potent, but come with increased development complexity and therefore cost. As an alternative, we developed two multi-specific DARPin® therapeutics, each combining three independent DARPin® domains binding the SARS-CoV-2 spike protein in one molecule, to potently neutralize the virus and overcome virus escape.Here, we show in a panel of in vitro studies that both multi-specific DARPin® therapeutics, ensovibep (MP0420) and MP0423, are highly potent against the new circulating SARS-CoV-2 variants B.1.1.7 (UK variant) and B.1.351 (South African variant) and the most frequent emerging mutations in the spike protein. Additionally, viral passaging experiments show potent protection by ensovibep and MP0423 against development of escape mutations. Furthermore, we demonstrate that the cooperative binding of the individual modules in a multi-specific DARPin® antiviral is key for potent virus inhibition and protection from escape variants. These results, combined with the relatively small size and high production yields of DARPin® molecules, suggests ensovibep and MP0423 as superior alternatives to monoclonal antibody cocktails for global supply and demonstrate the strength of the DARPin® platform for achieving potent and lasting virus inhibition for SARS-CoV-2 and possibly other viruses.

1984 ◽  
Vol 160 (1) ◽  
pp. 1-11 ◽  
Author(s):  
M Slaoui ◽  
O Leo ◽  
J Marvel ◽  
M Moser ◽  
J Hiernaux ◽  
...  

We have shown that, by suitable idiotypic manipulation, BALB/c mice can express the major cross-reactive idiotype (CRI) of A/J mice in response to azophenylarsonate (Ars). In order to know if the CRIA idiotype is present in the potential repertoire of BALB/c before any intentional selection, we used polyclonal activation in vitro and limiting dilution analysis. The readout was done with two monoclonal anti-CRIA antibodies that recognize distinct idiotopes on a CRIA+ A/J germline-encoded monoclonal antibody. We studied the frequency of CRIA+ lipopolysaccharide (LPS)-reactive cells in the spleens of nonimmune and immune A/J mice and in the spleens of naive and manipulated (i.e., producing CRIA+ antibodies) BALB/c mice. A/J and BALB/c naive individuals presented very high frequencies of Ars-specific B cells while the frequency of CRIA+ B cells was only a minor subset (0.5%) of the total Ars-specific subset in the two strains. When A/J mice were immunized with Ars-keyhole limpet hemocyanin, a clear preferential expansion of the CRIA+ minor subset of A/J mice was observed (100x). No such enhancement was observed in BALB/c mice similarly treated. Manipulated BALB/c mice presented a higher frequency of CRIA+ anti-Ars B cells than naive or antigen-immunized BALB/c individuals.


2021 ◽  
Author(s):  
Gideon Schreiber ◽  
Jiri Zahradník ◽  
Shir Marciano ◽  
Maya Shemesh ◽  
Eyal Zoler ◽  
...  

Abstract SARS-CoV-2 is continually evolving, with more contagious mutations spreading rapidly. Using in vitro evolution to affinity maturate the receptor-binding domain (RBD) of the spike protein towards ACE2 resulted in the more contagious mutations, S477N, E484K, and N501Y, to be among the first selected, explaining the convergent evolution of the “European” (20E-EU1), “British” (501.V1),”South African” (501.V2), and Brazilian variants (501.V3). Plotting the binding affinity to ACE2 of all RBD mutations against their incidence in the population shows a strong correlation between the two. Further in vitro evolution enhancing binding by 600-fold provides guidelines towards potentially new evolving mutations with even higher infectivity. For example, Q498R epistatic to N501Y. Nevertheless, the high-affinity RBD is also an efficient drug, inhibiting SARS-CoV-2 infection. The 2.9Å Cryo-EM structure of the high-affinity complex, including all rapidly spreading mutations, provides a structural basis for future drug and vaccine development and for in silico evaluation of known antibodies.


2021 ◽  
Author(s):  
Michael Stumpp

Abstract SARS-CoV-2 has infected millions of people globally and continues to undergo evolution. Emerging variants can be partially resistant to vaccine induced and therapeutic antibodies, emphasizing the urgent need for accessible, broad-spectrum therapeutics. Here, we report a comprehensive study of ensovibep, the first trispecific clinical DARPin candidate, that can simultaneously engage all three units of the spike protein trimer to potently inhibit ACE2 interaction, as revealed by structural analyses. The cooperative binding of the individual modules enables ensovibep to retain inhibitory potency against all frequent SARS-CoV-2 variants, including Omicron, as of December 2021. Moreover, viral passaging experiments show that ensovibep, when used as a single agent, can prevent development of escape mutations comparably to a cocktail of monoclonal antibodies (mAb). Finally, we demonstrate that the very high in vitro antiviral potency also translates into significant therapeutic protection and reduction of pathogenesis in Roborovski dwarf hamsters infected with either the SARS-CoV-2 wild-type or the Alpha variant. In this model, ensovibep prevents fatality and provides substantial protection equivalent to the standard of care mAb cocktail. These results support further clinical evaluation and indicate that ensovibep could be a valuable alternative to mAb cocktails and other treatments for COVID-19.


The structural genes for three forms of Rubisco have been isolated from bacteria and introduced into various plasmids. Apart from details of the sequences which have been obtained from these constructs, they are now being exploited for mutagenesis to determine the identity and specific function of the individual amino acid residues that compose the active site. These methods have been applied to a plasmid that contains the structural gene for the simplest form of Rubisco from Rhodospirillum rubrum to obtain mutant enzymes with altered activity. The construct pRR2119 is also expressed to very high levels in Escherichia coli and enough recombinant protein of both the wild-type and m utant enzymes can be obtained for detailed physico-chemical studies. Other vectors have now been constructed, containing the genes of prokaryotic Rubisco that assemble into an active form I enzyme. The levels of expression are acceptable and the product is similar to the authentic enzyme. These constructs are now being used for mutagenesis in vitro to attempt to alter the relative rates of the oxygenase and carboxylase activities.


2021 ◽  
Author(s):  
Christopher J Emig ◽  
Marco A Mena ◽  
Steven J Henry ◽  
Adela Vitug ◽  
Christian John Ventura ◽  
...  

Infections from the SARS-CoV-2 virus have killed over 4.6 million people since it began spreading through human populations in late 2019. In order to develop a therapeutic or prophylactic antibody to help mitigate the effects of the pandemic, a human monoclonal antibody (mAb) that binds to the SARS-CoV-2 spike protein was isolated from a convalescent patient following recovery from COVID-19 disease. This mAb, designated AUG-3387, demonstrates a high affinity for the spike protein of the original viral strains and all variants tested to date. In vitro pseudovirus neutralization and SARS-CoV-2 neutralization activity has been demonstrated in vitro. In addition, a dry powder formulation has been prepared using a Thin Film Freezing (TFF) process that exhibited a fine particle fraction (FPF) of 50.95 ± 7.69% and a mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) of 3.74 ± 0.73 μm and 2.73 ± 0.20, respectively. The dry powder is suitable for delivery directly to the lungs of infected patients using a dry powder inhaler device. Importantly, AUG-3387, administered as a liquid by intraperitoneal injection or the dry powder formulation delivered intratracheally into Syrian hamsters 24 hours after intranasal SARS-CoV-2 infection, demonstrated a dose-dependent reduction in the lung viral load of the virus. These data suggest that AUG-3387 formulated as a dry powder demonstrates potential to treat COVID-19.


2021 ◽  
Author(s):  
Ilse Roodink ◽  
Maartje van Erp ◽  
Andra Li ◽  
Sheila Potter ◽  
Sander Martinus Johannes van Duijnhoven ◽  
...  

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created an ongoing global human health crisis and will likely become endemic, requiring novel sustainable therapeutic strategies. We report on the discovery of a fully human multi-antibody cocktail (TATX-03) targeting diversified non-overlapping epitopes on the SARS-CoV-2 spike protein that suppressed replication-competent viral titers to undetectable levels in the lungs of SARS-CoV-2 challenged hamsters upon both prophylactic and therapeutic administration. While monotherapy with two of the individual cocktail components also showed clear in vivo protection, neither recapitulated the efficacy of TATX-03. This synergistic effect was further supported by examining in vivo efficacy of these individual antibodies and corresponding combination therapy at a lower dose. Furthermore, in vitro screenings using VSV-particles pseudo-typed with spike proteins representing the SARS-CoV-2 variants of concern Alpha, Beta, and Delta showed that TATX-03 maintained its neutralization potency. These results merit further development of TATX-03 as a potential therapy for SARS-CoV-2 infection with resistance to mutagenic escape.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S362-S362
Author(s):  
Hongkai Bao ◽  
Yi Guo ◽  
Kelsie Cowman ◽  
Victor Chen ◽  
Priya Nori ◽  
...  

Abstract Background Monoclonal antibodies were given emergency use authorization (EUA) by the Food and Drug Administration for the treatment of high-risk, outpatient COVID-19 infection. In New York City (NYC), the emergence and rapid growth of the B.1.526 variant of concern (VOC) possessing the E484K mutation was first noted in February 2021. In-vitro studies subsequently confirmed attenuated monoclonal antibody neutralization against VOCs. At our institution, bamlanivimab (BAM) alone or with etesevimab (B/E) and casirivimab/imdevimab (C/I) were utilized at different phases of the pandemic. The objective of this study was to assess their comparative efficacies in a highly variant prevalent setting. Methods This retrospective analysis was conducted at an urban hospital in the Bronx, NY and evaluated adult monoclonal antibody recipients from any of our infusion sites. Patients initially received BAM but given the high prevalence of variants, treatment was transitioned to first B/E and then C/I exclusively. We compared BAM versus combination therapy as well as B/E versus C/I individually. The primary outcome was all-cause hospital admission within 30 days post infusion. Results From February 1 to March 7, 2021, 358 patients received BAM and from March 17 to May 9, 2021, 86 and 179 patients received B/E and C/I, respectively. Compared to any combination infusion, patients who received BAM were significantly older, more likely to possess ≥ 2 qualifying EUA criteria, and less likely to be vaccinated for COVID-19 prior to infusion (Table 1). Following B/E and C/I, 4.5% of patients were admitted versus 10.1% for BAM, p=0.011. There were no significant differences in admission between B/E and C/I recipients, p=0.485. After excluding fully vaccinated patients (n=14) and adjusting for age and ≥ 2 EUA criteria, combination therapy remained associated with decreased odds of hospitalization compared to BAM (odds ratio, 0.48; 95% confidence interval, 0.24-0.94). Conclusion Combination therapy may be associated with fewer hospital admissions following infusion, although there were no statistically significant differences between the individual combination infusions. We suggest similar studies be conducted by other sites to understand the clinical impact of local SARS-CoV-2 variants on antibody efficacy. Disclosures Yi Guo, PharmD, BCIDP, Merck (Research Grant or Support) Kelsie Cowman, MPH, Merck (Research Grant or Support) Priya Nori, MD, Merck (Grant/Research Support) Priya Nori, MD, Nothing to disclose


2021 ◽  
Vol 12 ◽  
Author(s):  
Sua Lee ◽  
Shina Jang ◽  
Jihoon Kang ◽  
Soo Bin Park ◽  
Young Woo Han ◽  
...  

Since the coronavirus disease outbreak in 2019, several antibody therapeutics have been developed to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Antibody therapeutics are effective in neutralizing the virus and reducing hospitalization in patients with mild and moderate infections. These therapeutics target the spike protein of SARS-CoV-2; however, emerging mutations in this protein reduce their efficiency. In this study, we developed a universal SARS-CoV-2 neutralizing antibody. We generated a humanized monoclonal antibody, MG1141A, against the receptor-binding domain of the spike protein through traditional mouse immunization. We confirmed that MG1141A could effectively neutralize live viruses, with an EC50 of 92 pM, and that it exhibited effective Fc-mediated functions. Additionally, it retained its neutralizing activity against the alpha (UK), beta (South Africa), and gamma (Brazil) variants of SARS-CoV-2. Taken together, our study contributes to the development of a novel antibody therapeutic approach, which can effectively combat emerging SARS-CoV-2 mutations.


Monoclonal antibodies that detect folding intermediates in vitro were used to monitor the appearance of folded polypeptide chains during their synthesis on the ribosomes. Nascent immunoreactive chains of the bacteriophage P22 tail-spike protein and of the Escherichia coli β 2 subunit of tryptophan-synthase were thus identified, suggesting that they can fold on the ribosomes. Moreover, the immunoreactivity of ribosome- bound tryptophan-synthase β-chains of intermediate lengths was shown to appear with no detectable delay compared to their synthesis. This suggested that β-chains start folding during their elongation on the ribosomes. However, newly synthesized incomplete β-chains were shown to interact with chaperones while still bound to the ribosome. Because of the peculiar properties of the epitope recognized by the anti- tryptophan-synthase monoclonal antibody used, it could not be concluded whether the immunoreactivity of the nascent β-chains resulted from their ability to fold cotranslationally or from their association with chaperones which might maintain them in an unfolded, immunoreactive state.


2019 ◽  
Vol 65 (3) ◽  
pp. 393-405 ◽  
Author(s):  
Eszter Lázár-Molnár ◽  
Julio C Delgado

Abstract BACKGROUND Monoclonal antibody therapeutics (MATs) represent a rapidly expanding class of biological drugs used to treat a variety of diseases. The widespread use of MATs increasingly affects clinical laboratory medicine. CONTENT This review provides an overview of MATs currently approved for clinical use in the US, starting from basic biology of antibodies to the engineering, pharmacokinetic and pharmacodynamic properties, nomenclature, and production of MATs. Immunogenicity and the production of antidrug antibodies (ADAs) play a major role in loss of therapeutic response and the development of treatment failure to certain MATs. Laboratory-based monitoring for MATs and detection of ADAs represent emerging needs for optimizing the use of MATs to achieve the best outcomes at affordable cost. In addition, the increased use of MATs affects clinical laboratory testing by interference of MATs with clinical laboratory tests across different areas of laboratory medicine, including histocompatibility, blood bank, and monoclonal protein testing. SUMMARY The number of MATs is rapidly growing each year to address previously unmet clinical needs. Laboratory monitoring of MATs and detecting ADAs represent expanding areas of laboratory testing. Test-based strategies allow for treatment optimization at the level of the individual patient, thus providing a personalized medicine approach. In addition, clinical laboratories must be aware that the increasing use of MATs affects laboratory testing and be ready to implement methods to eliminate or mitigate interference with clinical tests.


Sign in / Sign up

Export Citation Format

Share Document