scholarly journals Automated Detection of COVID-19 through Convolutional Neural Network using Chest x-ray images

Author(s):  
Rubina Sarki ◽  
Khandakar Ahmed ◽  
Hua Wang ◽  
Yanchun Zhang ◽  
Kate Wang

AbstractThe COVID-19 epidemic appears to have a catastrophic impact on global well-being and public health. More than 10 million confirmed cases have been reported worldwide until now. Due to the growing number of confirmed cases, timely and accurate classification of healthy and infected patients is essential to control and treat COVID-19. To this end, in this paper, we aim to develop a deep learning-based system for the persuasive classification and reliable detection of COVID-19 using chest radiography. Firstly, we evaluate the performance of various state-of-the-art convolutional neural networks (CNNs) proposed over recent years for medical image classification. Secondly, we develop and train CNN from scratch. In both cases, we use a recently published public X-Ray dataset for training and validation purposes. For transfer learning, we obtain 100% accuracy for binary classification (i.e., Normal/COVID-19) and 87.50% accuracy for tertiary classification (Normal/COVID-19/Pneumonia). With the CNN trained from scratch, we achieve 93.75% accuracy for tertiary classification. We observe, in the case of transfer learning, the classification accuracy drops with an increased number of classes. Our comprehensive ROC and confusion metric analysis with 10-fold cross-validation strongly underpin our findings.

Author(s):  
Sohaib Asif ◽  
Yi Wenhui ◽  
Hou Jin ◽  
Yi Tao ◽  
Si Jinhai

AbstractThe COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. A vital step in the combat towards COVID-19 is a successful screening of contaminated patients, with one of the key screening approaches being radiological imaging using chest radiography. This study aimed to automatically detect COVID‐ 19 pneumonia patients using digital chest x‐ ray images while maximizing the accuracy in detection using deep convolutional neural networks (DCNN). The dataset consists of 864 COVID‐ 19, 1345 viral pneumonia and 1341 normal chest x‐ ray images. In this study, DCNN based model Inception V3 with transfer learning have been proposed for the detection of coronavirus pneumonia infected patients using chest X-ray radiographs and gives a classification accuracy of more than 98% (training accuracy of 97% and validation accuracy of 93%). The results demonstrate that transfer learning proved to be effective, showed robust performance and easily deployable approach for COVID-19 detection.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajit Nair ◽  
Santosh Vishwakarma ◽  
Mukesh Soni ◽  
Tejas Patel ◽  
Shubham Joshi

Purpose The latest 2019 coronavirus (COVID-2019), which first appeared in December 2019 in Wuhan's city in China, rapidly spread around the world and became a pandemic. It has had a devastating impact on daily lives, the public's health and the global economy. The positive cases must be identified as soon as possible to avoid further dissemination of this disease and swift care of patients affected. The need for supportive diagnostic instruments increased, as no specific automated toolkits are available. The latest results from radiology imaging techniques indicate that these photos provide valuable details on the virus COVID-19. User advanced artificial intelligence (AI) technologies and radiological imagery can help diagnose this condition accurately and help resolve the lack of specialist doctors in isolated areas. In this research, a new paradigm for automatic detection of COVID-19 with bare chest X-ray images is displayed. Images are presented. The proposed model DarkCovidNet is designed to provide correct binary classification diagnostics (COVID vs no detection) and multi-class (COVID vs no results vs pneumonia) classification. The implemented model computed the average precision for the binary and multi-class classification of 98.46% and 91.352%, respectively, and an average accuracy of 98.97% and 87.868%. The DarkNet model was used in this research as a classifier for a real-time object detection method only once. A total of 17 convolutionary layers and different filters on each layer have been implemented. This platform can be used by the radiologists to verify their initial application screening and can also be used for screening patients through the cloud. Design/methodology/approach This study also uses the CNN-based model named Darknet-19 model, and this model will act as a platform for the real-time object detection system. The architecture of this system is designed in such a way that they can be able to detect real-time objects. This study has developed the DarkCovidNet model based on Darknet architecture with few layers and filters. So before discussing the DarkCovidNet model, look at the concept of Darknet architecture with their functionality. Typically, the DarkNet architecture consists of 5 pool layers though the max pool and 19 convolution layers. Assume as a convolution layer, and as a pooling layer. Findings The work discussed in this paper is used to diagnose the various radiology images and to develop a model that can accurately predict or classify the disease. The data set used in this work is the images bases on COVID-19 and non-COVID-19 taken from the various sources. The deep learning model named DarkCovidNet is applied to the data set, and these have shown signification performance in the case of binary classification and multi-class classification. During the multi-class classification, the model has shown an average accuracy 98.97% for the detection of COVID-19, whereas in a multi-class classification model has achieved an average accuracy of 87.868% during the classification of COVID-19, no detection and Pneumonia. Research limitations/implications One of the significant limitations of this work is that a limited number of chest X-ray images were used. It is observed that patients related to COVID-19 are increasing rapidly. In the future, the model on the larger data set which can be generated from the local hospitals will be implemented, and how the model is performing on the same will be checked. Originality/value Deep learning technology has made significant changes in the field of AI by generating good results, especially in pattern recognition. A conventional CNN structure includes a convolution layer that extracts characteristics from the input using the filters it applies, a pooling layer that reduces calculation efficiency and the neural network's completely connected layer. A CNN model is created by integrating one or more of these layers, and its internal parameters are modified to accomplish a specific mission, such as classification or object recognition. A typical CNN structure has a convolution layer that extracts features from the input with the filters it applies, a pooling layer to reduce the size for computational performance and a fully connected layer, which is a neural network. A CNN model is created by combining one or more such layers, and its internal parameters are adjusted to accomplish a particular task, such as classification or object recognition.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5813
Author(s):  
Muhammad Umair ◽  
Muhammad Shahbaz Khan ◽  
Fawad Ahmed ◽  
Fatmah Baothman ◽  
Fehaid Alqahtani ◽  
...  

The COVID-19 outbreak began in December 2019 and has dreadfully affected our lives since then. More than three million lives have been engulfed by this newest member of the corona virus family. With the emergence of continuously mutating variants of this virus, it is still indispensable to successfully diagnose the virus at early stages. Although the primary technique for the diagnosis is the PCR test, the non-contact methods utilizing the chest radiographs and CT scans are always preferred. Artificial intelligence, in this regard, plays an essential role in the early and accurate detection of COVID-19 using pulmonary images. In this research, a transfer learning technique with fine tuning was utilized for the detection and classification of COVID-19. Four pre-trained models i.e., VGG16, DenseNet-121, ResNet-50, and MobileNet were used. The aforementioned deep neural networks were trained using the dataset (available on Kaggle) of 7232 (COVID-19 and normal) chest X-ray images. An indigenous dataset of 450 chest X-ray images of Pakistani patients was collected and used for testing and prediction purposes. Various important parameters, e.g., recall, specificity, F1-score, precision, loss graphs, and confusion matrices were calculated to validate the accuracy of the models. The achieved accuracies of VGG16, ResNet-50, DenseNet-121, and MobileNet are 83.27%, 92.48%, 96.49%, and 96.48%, respectively. In order to display feature maps that depict the decomposition process of an input image into various filters, a visualization of the intermediate activations is performed. Finally, the Grad-CAM technique was applied to create class-specific heatmap images in order to highlight the features extracted in the X-ray images. Various optimizers were used for error minimization purposes. DenseNet-121 outperformed the other three models in terms of both accuracy and prediction.


2021 ◽  
pp. 20201263
Author(s):  
Mohammad Salehi ◽  
Reza Mohammadi ◽  
Hamed Ghaffari ◽  
Nahid Sadighi ◽  
Reza Reiazi

Objective: Pneumonia is a lung infection and causes the inflammation of the small air sacs (Alveoli) in one or both lungs. Proper and faster diagnosis of pneumonia at an early stage is imperative for optimal patient care. Currently, chest X-ray is considered as the best imaging modality for diagnosing pneumonia. However, the interpretation of chest X-ray images is challenging. To this end, we aimed to use an automated convolutional neural network-based transfer-learning approach to detect pneumonia in paediatric chest radiographs. Methods: Herein, an automated convolutional neural network-based transfer-learning approach using four different pre-trained models (i.e. VGG19, DenseNet121, Xception, and ResNet50) was applied to detect pneumonia in children (1–5 years) chest X-ray images. The performance of different proposed models for testing data set was evaluated using five performances metrics, including accuracy, sensitivity/recall, Precision, area under curve, and F1 score. Results: All proposed models provide accuracy greater than 83.0% for binary classification. The pre-trained DenseNet121 model provides the highest classification performance of automated pneumonia classification with 86.8% accuracy, followed by Xception model with an accuracy of 86.0%. The sensitivity of the proposed models was greater than 91.0%. The Xception and DenseNet121 models achieve the highest classification performance with F1-score greater than 89.0%. The plotted area under curve of receiver operating characteristics of VGG19, Xception, ResNet50, and DenseNet121 models are 0.78, 0.81, 0.81, and 0.86, respectively. Conclusion: Our data showed that the proposed models achieve a high accuracy for binary classification. Transfer learning was used to accelerate training of the proposed models and resolve the problem associated with insufficient data. We hope that these proposed models can help radiologists for a quick diagnosis of pneumonia at radiology departments. Moreover, our proposed models may be useful to detect other chest-related diseases such as novel Coronavirus 2019. Advances in knowledge: Herein, we used transfer learning as a machine learning approach to accelerate training of the proposed models and resolve the problem associated with insufficient data. Our proposed models achieved accuracy greater than 83.0% for binary classification.


Mekatronika ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 44-51
Author(s):  
Nur Ameerah Hakimi ◽  
Mohd Azhar Mohd Razman ◽  
Anwar P. P. Abdul Majeed

Covid-19 is a contagious disease that known to cause respirotary infection in humans. Almost 219 countries are effected by the outbreak of the latest coronavirus pandemic, exceed 100 millions of confirmed cases and about 2 million death recorded aound the world. This condition is alarming as some of the people who are infected with the virus show no symptoms of the disease. Due to the number of confirmed cases rapidly rising around the world, it is crucial  find another method to diagnose the disease at the beginnings stage in order to control the spreading of the virus. Another alternative test from the main screening method is by using chest radiology image based detection which are X-ray or CT scan images. The aim of this research is to classify the Covid-19 cases by using the image classification technique.The dataset consist of 2000 images of chest X-ray images and have two classes which are Covid and Non-Covid. Each of the class consists of 1000 images.This research compare the performance of the various Transfer Learning models (VGG-16, VGG-19, and Inception V3) in extracting the feature from X-ray image combined with machine learning model (SVM, kNN, and Random Forest) as a classifier. The experiment result showed the VGG-19, VGG-16, and Inception V3 coupled with optimized SVM pipelines are comparably efficient in classifying the cases as compared to other pipelines evaluated in this reaseach and could archieved 99% acuuracy on the test datasets.


2020 ◽  
Vol 10 (8) ◽  
pp. 2908 ◽  
Author(s):  
Juan Luján-García ◽  
Cornelio Yáñez-Márquez ◽  
Yenny Villuendas-Rey ◽  
Oscar Camacho-Nieto

Pneumonia is an infectious disease that affects the lungs and is one of the principal causes of death in children under five years old. The Chest X-ray images technique is one of the most used for diagnosing pneumonia. Several Machine Learning algorithms have been successfully used in order to provide computer-aided diagnosis by automatic classification of medical images. For its remarkable results, the Convolutional Neural Networks (models based on Deep Learning) that are widely used in Computer Vision tasks, such as classification of injuries and brain abnormalities, among others, stand out. In this paper, we present a transfer learning method that automatically classifies between 3883 chest X-ray images characterized as depicting pneumonia and 1349 labeled as normal. The proposed method uses the Xception Network pre-trained weights on ImageNet as an initialization. Our model is competitive with respect to state-of-the-art proposals. To make comparisons with other models, we have used four well-known performance measures, obtaining the following results: precision (0.84), recall (0.99), F1-score (0.91) and area under the ROC curve (0.97). These positive results allow us to consider our proposal as an alternative that can be useful in countries with a lack of equipment and specialized radiologists.


2021 ◽  
Vol 2 (2) ◽  
pp. 132-148
Author(s):  
Joy Iong-Zong Chen

COVID-19 appears to be having a devastating influence on world health and well-being. Moreover, the COVID-19 confirmed cases have recently increased to over 10 million worldwide. As the number of verified cases increase, it is more important to monitor and classify healthy and infected people in a timely and accurate manner. Many existing detection methods have failed to detect viral patterns. Henceforth, by using COVID-19 thoracic x-rays and the histogram-oriented gradients (HOG) feature extraction methodology; this research work has created an accurate classification method for performing a reliable detection of COVID-19 viral patterns. Further, the proposed classification model provides good results by leveraging accurate classification of COVID-19 disease based on the medical images. Besides, the performance of our proposed CNN classification method for medical imaging has been assessed based on different edge-based neural networks. Whenever there is an increasing number of a class in the training network, the accuracy of tertiary classification with CNN will be decreasing. Moreover, the analysis of 10 fold cross-validation with confusion metrics can also take place in our research work to detect various diseases caused due to lung infection such as Pneumonia corona virus-positive or negative. The proposed CNN model has been trained and tested with a public X-ray dataset, which is recently published for tertiary and normal classification purposes. For the instance transfer learning, the proposed model has achieved 85% accuracy of tertiary classification that includes normal, COVID-19 positive and Pneumonia. The proposed algorithm obtains good classification accuracy during binary classification procedure integrated with the transfer learning method.


Author(s):  
Amir Sorayaie Azar ◽  
Ali Ghafari ◽  
Mohammad Ostadi Najar ◽  
Samin Babaei Rikan ◽  
Reza Ghafari ◽  
...  

Purpose: Coronavirus disease 2019 (Covid-19), first reported in December 2019 in Wuhan, China, has become a pandemic. Chest imaging is used for the diagnosis of Covid-19 patients and can address problems concerning Reverse Transcription-Polymerase Chain Reaction (RT-PCR) shortcomings. Chest X-ray images can act as an appropriate alternative to Computed Tomography (CT) for diagnosing Covid-19. The purpose of this study is to use a Deep Learning method for diagnosing Covid-19 cases using chest X-ray images. Thus, we propose Covidense based on the pre-trained Densenet-201 model and is trained on a dataset comprising chest X-ray images of Covid-19, normal, bacterial pneumonia, and viral pneumonia cases. Materials and Methods: In this study, a total number of 1280 chest X-ray images of Covid-19, normal, bacterial and viral pneumonia cases were collected from open access repositories. Covidense, a convolutional neural network model, is based on the pre-trained DenseNet-201 architecture, and after pre-processing the images, it has been trained and tested on the images using the 5-fold cross-validation method. Results: The accuracy of different classifications including classification of two classes (Covid-19, normal), three classes 1 (Covid-19, normal and bacterial pneumonia), three classes 2 (Covid-19, normal and viral pneumonia), and four classes (Covid-19, normal, bacterial pneumonia and viral pneumonia) are 99.46%, 92.86%, 93.91 %, and 91.01% respectively. Conclusion: This model can differentiate pneumonia caused by Covid-19 from other types of pneumonia, including bacterial and viral. The proposed model offers high accuracy and can be of great help for effective screening. Thus, reducing the rate of infection spread. Also, it can act as a complementary tool for the detection and diagnosis of Covid-19.


Sign in / Sign up

Export Citation Format

Share Document