scholarly journals A clonal fresh water plants acquires transgenerational stress resistance under recurring copper excess

2021 ◽  
Author(s):  
Meret Huber ◽  
Saskia Gablenz ◽  
Martin Höfer

ABSTRACTAlthough non-genetic inheritance is thought to play an important role in plant ecology and evolution, evidence for adaptive transgenerational plasticity is scarce. Here, we investigated the consequences of copper excess on offspring defences and fitness in the giant duckweed (Spirodela polyrhiza) across multiple asexual generations. We found that exposing large monoclonal populations (>10,000 individuals) for 30 generations to copper excess decreased plant fitness during the first few generations but increased their fitness in consecutive generations under recurring stress when plants were grown for 5 generations under control conditions prior recurring conditions. Similarly, propagating individual plants as single descendants for 5 or 10 generations under copper excess decreased plant fitness when 5 generations and improved plant fitness when 10 generations passed between initial and recurring stress; thus, transgenerational stress responses likely contributed to the observed variations in offspring fitness of long-term copper exposed populations. Fitness benefits under recurring stress were partially associated with avoidance of excessive copper accumulation, which in turn correlated with transgenerationally modified flavonoid concentrations. Taken together, these data demonstrate time-dependent adaptive transgenerational responses under recurring stress, which highlights the importance of non-genetic inheritance for plant ecology and evolution.

2021 ◽  
Vol 288 (1955) ◽  
pp. 20211269
Author(s):  
Meret Huber ◽  
Saskia Gablenz ◽  
Martin Höfer

Although non-genetic inheritance is thought to play an important role in plant ecology and evolution, evidence for adaptive transgenerational plasticity is scarce. Here, we investigated the consequences of copper excess on offspring defences and fitness under recurring stress in the duckweed Spirodela polyrhiza across multiple asexual generations . Growing large monoclonal populations (greater than 10 000 individuals) for 30 generations under copper excess had negative fitness effects after short and no fitness effect after prolonged growth under recurring stress. These time-dependent growth rates were likely influenced by environment-induced transgenerational responses, as propagating plants as single descendants for 2 to 10 generations under copper excess had positive, negative or neutral effects on offspring fitness depending on the interval between initial and recurring stress (5 to 15 generations). Fitness benefits under recurring stress were independent of flavonoid accumulations, which in turn were associated with altered plant copper concentrations. Copper excess modified offspring fitness under recurring stress in a genotype-specific manner, and increasing the interval between initial and recurring stress reversed these genotype-specific fitness effects. Taken together, these data demonstrate time- and genotype-dependent adaptive and non-adaptive transgenerational responses under recurring stress, which suggests that non-genetic inheritance alters the evolutionary trajectory of clonal plant lineages in fluctuating environments.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
David Western ◽  
Victor N. Mose ◽  
David Maitumo ◽  
Caroline Mburu

Abstract Background Studies of the African savannas have used national parks to test ecological theories of natural ecosystems, including equilibrium, non-equilibrium, complex adaptive systems, and the role of top-down and bottom-up physical and biotic forces. Most such studies have excluded the impact of pastoralists in shaping grassland ecosystems and, over the last half century, the growing human impact on the world’s rangelands. The mounting human impact calls for selecting indicators and integrated monitoring methods able to track ecosystem changes and the role of natural and human agencies. Our study draws on five decades of monitoring the Amboseli landscape in southern Kenya to document the declining role of natural agencies in shaping plant ecology with rising human impact. Results We show that plant diversity and productivity have declined, biomass turnover has increased in response to a downsizing of mean plant size, and that ecological resilience has declined with the rising probability of extreme shortfalls in pasture production. The signature of rainfall and physical agencies in driving ecosystem properties has decreased sharply with growing human impact. We compare the Amboseli findings to the long-term studies of Kruger and Serengeti national parks to show that the human influence, whether by design or default, is increasingly shaping the ecology of savanna ecosystems. We look at the findings in the larger perspective of human impact on African grasslands and the world rangelands, in general, and discuss the implications for ecosystem theory and conservation policy and management. Conclusions The Amboseli study shows the value of using long-term integrated ecological monitoring to track the spatial and temporal changes in the species composition, structure, and function of rangeland ecosystems and the role of natural and human agencies in the process of change. The study echoes the widespread changes underway across African savannas and world’s rangelands, concluding that some level of ecosystem management is needed to prevent land degradation and the erosion of ecological function, services, and resilience. Despite the weak application of ecological theory to conservation management, a plant trait-based approach is shown to be useful in explaining the macroecological changes underway.


2021 ◽  
Vol 22 (10) ◽  
pp. 5349
Author(s):  
Mayes Alswady-Hoff ◽  
Johanna Samulin Erdem ◽  
Santosh Phuyal ◽  
Oskar Knittelfelder ◽  
Animesh Sharma ◽  
...  

There is little in vitro data available on long-term effects of TiO2 exposure. Such data are important for improving the understanding of underlying mechanisms of adverse health effects of TiO2. Here, we exposed pulmonary epithelial cells to two doses (0.96 and 1.92 µg/cm2) of TiO2 for 13 weeks and effects on cell cycle and cell death mechanisms, i.e., apoptosis and autophagy were determined after 4, 8 and 13 weeks of exposure. Changes in telomere length, cellular protein levels and lipid classes were also analyzed at 13 weeks of exposure. We observed that the TiO2 exposure increased the fraction of cells in G1-phase and reduced the fraction of cells in G2-phase, which was accompanied by an increase in the fraction of late apoptotic/necrotic cells. This corresponded with an induced expression of key apoptotic proteins i.e., BAD and BAX, and an accumulation of several lipid classes involved in cellular stress and apoptosis. These findings were further supported by quantitative proteome profiling data showing an increase in proteins involved in cell stress and genomic maintenance pathways following TiO2 exposure. Altogether, we suggest that cell stress response and cell death pathways may be important molecular events in long-term health effects of TiO2.


2014 ◽  
Vol 41 (8) ◽  
pp. 641 ◽  
Author(s):  
Mickey Agha ◽  
Mason O. Murphy ◽  
Jeffrey E. Lovich ◽  
Joshua R. Ennen ◽  
Christian R. Oldham ◽  
...  

Context There is little information available on how research activities might cause stress responses in wildlife, especially responses of threatened species such as the desert tortoise (Gopherus agassizii). Aims The present study aims to detect behavioural effects of researcher handling and winter precipitation on a natural population of desert tortoises in the desert of Southwestern United States, over the period 1997 to 2014, through extensive assessments of capture events during multiple research studies, and capture–mark–recapture survivorship analysis. Methods Juvenile and adult desert tortoises were repeatedly handled with consistent methodology across 18 years during 10 study seasons. Using a generalised linear mixed-effects model, we assessed the effects of both research manipulation and abiotic conditions on probability of voiding. Additionally, we used a Cormack–Jolly–Seber model to assess the effects of winter precipitation and voiding on long-term apparent survivorship. Key results Of 1008 total capture events, voiding was recorded on 83 (8.2%) occasions in 42 different individuals. Our top models indicated that increases in handling time led to significantly higher probabilities of voiding for juveniles, females and males. Similarly, increases in precipitation resulted in significantly higher probabilities of voiding for juveniles and females, but not for males. Tortoise capture frequency was negatively correlated with voiding occurrence. Cormack–Jolly–Seber models demonstrated a weak effect of winter precipitation on survivorship, but a negligible effect for both voiding behaviour and sex. Conclusions Handling-induced voiding by desert tortoises may occur during common research activities and years of above average winter precipitation. Increased likelihood of voiding in individuals with relatively low numbers of recaptures suggested that tortoises may have perceived researchers initially as predators, and therefore voided as a defensive strategy. Voiding does not appear to impact long-term survivorship in desert tortoises at this site. Implications This study has demonstrated that common handling practices on desert tortoise may cause voiding behaviour. These results suggest that in order to minimise undesirable behavioural responses in studied desert tortoise populations, defined procedures or protocols must be followed by the investigators to reduce contact period to the extent feasible.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Claudia J. Labrador-Rached ◽  
Rebecca T. Browning ◽  
Laura K. Braydich-Stolle ◽  
Kristen K. Comfort

Due to their distinctive physicochemical properties, platinum nanoparticles (PtNPs) have emerged as a material of interest for a number of biomedical therapeutics. However, in some instances NP exposure has been correlated to health and safety concerns, including cytotoxicity, activation of cellular stress, and modification to normal cell functionality. As PtNPs have induced differential cellular responses in vitro, the goal of this study was to further characterize the behavior and toxicological potential of PtNPs within a HepG2 liver model. This study identified that a high PtNP dosage induced HepG2 cytotoxicity. However, lower, subtoxic PtNP concentrations were able to elicit multiple stress responses, secretion of proinflammatory cytokines, and modulation of insulin-like growth factor-1 dependent signal transduction. Taken together, this work suggests that PtNPs would not be overtly toxic for acute exposures, but sustained cellular interactions might produce long term health consequences.


2015 ◽  
Vol 100 ◽  
pp. 94-100 ◽  
Author(s):  
M. Bačkorová ◽  
I. Biľová ◽  
T. Kimáková ◽  
M. Bačkor
Keyword(s):  

2010 ◽  
Vol 76 (9) ◽  
pp. 2989-2996 ◽  
Author(s):  
Juan Zhang ◽  
Guo-Cheng Du ◽  
Yanping Zhang ◽  
Xian-Yan Liao ◽  
Miao Wang ◽  
...  

ABSTRACT Lactobacillus sanfranciscensis DSM20451 cells containing glutathione (GSH) displayed significantly higher resistance against cold stress induced by freeze-drying, freeze-thawing, and 4°C cold treatment than those without GSH. Cells containing GSH were capable of maintaining their membrane structure intact when exposed to freeze-thawing. In addition, cells containing GSH showed a higher proportion of unsaturated fatty acids in cell membranes upon long-term cold treatment. Subsequent studies revealed that the protective role of GSH against cryodamage of the cell membrane is partly due to preventing peroxidation of membrane fatty acids and protecting Na+,K+-ATPase. Intracellular accumulation of GSH enhanced the survival and the biotechnological performance of L. sanfranciscensis, suggesting that the robustness of starters for sourdough fermentation can be improved by selecting GSH-accumulating strains. Moreover, the results of this study may represent a further example of mechanisms for stress responses in lactic acid bacteria.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Doreen Babin ◽  
Loreen Sommermann ◽  
Soumitra Paul Chowdhury ◽  
Jan H Behr ◽  
Martin Sandmann ◽  
...  

ABSTRACT A better understanding of factors shaping the rhizosphere microbiota is important for sustainable crop production. We hypothesized that the effect of agricultural management on the soil microbiota is reflected in the assemblage of the rhizosphere microbiota with implications for plant performance. We designed a growth chamber experiment growing the model plant lettuce under controlled conditions in soils of a long-term field experiment with contrasting histories of tillage (mouldboard plough vs cultivator tillage), fertilization intensity (intensive standard nitrogen (N) + pesticides/growth regulators vs extensive reduced N without fungicides/growth regulators), and last standing field crop (rapeseed vs winter wheat). High-throughput sequencing of bacterial and archaeal 16S rRNA genes and fungal ITS2 regions amplified from total community DNA showed that these factors shaped the soil and rhizosphere microbiota of lettuce, however, to different extents among the microbial domains. Pseudomonas and Olpidium were identified as major indicators for agricultural management in the rhizosphere of lettuce. Long-term extensive fertilization history of soils resulted in higher lettuce growth and increased expression of genes involved in plant stress responses compared to intensive fertilization. Our work adds to the increasing knowledge on how soil microbiota can be manipulated by agricultural management practices which could be harnessed for sustainable crop production.


2019 ◽  
Vol 19 (3) ◽  
pp. 2537-2545
Author(s):  
Gülseren Keskin

Background: Stress can be defined as an acute threat to the homeostasis of an organism, and in order to manage stress, and maintain stability, the allostatic systems activate an adaptive response. Stress has been shown to have both short - and long-term effects on the function of the gastrointestinal tract, but long-term exposure to stress is more likely to cause endocrine disorders.Objective: The aim of this study was to investigate the endocrine response to stress, and evaluate the relationship between somatization and gastrointestinal symptoms.Methods: A systematic literature search was conducted on several academic databases, which included, Pubmed, EBSCO and Science Direct. The search was performed using the keywords, “endocrine response to stress”, “somatization” and “gastrointestinal symptoms”. Results: The hypothalamic-pituitary-adrenal (HPA) axis is essential in controlling physiological stress responses. Dysfunction is related to several mental disorders, including anxiety and depression, or somatization. Symptoms associated with genetic, or other traumatic experiences of individuals under stress, can lead to a maladaptive response to stress. These stressful life events were found to be associated with digestive system-related chronic diseases. Gastrointestinal disorders significantly affect millions of people worldwide. Conclusion: This study examined how the endocrine system responds to stress, and the effect this has in causing stress-related gastrointestinal distresses. Our findings indicate that stress-related psychological disorders are strongly associated with the severity of gastrointestinal symptoms.Keywords: Stress, endocrine response, somatization, gastrointestinal symptoms.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniela S. Rivera ◽  
Carolina B. Lindsay ◽  
Carolina A. Oliva ◽  
Juan Francisco Codocedo ◽  
Francisco Bozinovic ◽  
...  

Abstract Social isolation is considered a stressful situation that results in increased physiological reactivity to novel stimuli, altered behaviour, and impaired brain function. Here, we investigated the effects of long-term social isolation on working memory, spatial learning/memory, hippocampal synaptic transmission, and synaptic proteins in the brain of adult female and male Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects, makes it a unique animal model that can be highly applicable for further social, emotional, cognitive, and aging studies. These animals were socially isolated from post-natal and post-weaning until adulthood. We also evaluated if re-socialization would be able to compensate for reactive stress responses in chronically stressed animals. We showed that long-term social isolation impaired the HPA axis negative feedback loop, which can be related to cognitive deficits observed in chronically stressed animals. Notably, re-socialization restored it. In addition, we measured physiological aspects of synaptic transmission, where chronically stressed males showed more efficient transmission but deficient plasticity, as the reverse was true on females. Finally, we analysed synaptic and canonical Wnt signalling proteins in the hypothalamus, hippocampus, and prefrontal cortex, finding both sex- and brain structure-dependent modulation, including transient and permanent changes dependent on stress treatment.


Sign in / Sign up

Export Citation Format

Share Document