scholarly journals Pulsed broad-spectrum UV light effectively inactivates SARS-CoV-2 on multiple surfaces

2021 ◽  
Author(s):  
Alexander S. Jureka ◽  
Caroline G. Williams ◽  
Christopher F. Basler

AbstractThe ongoing SARS-CoV-2 pandemic has resulted in an increased need for technologies capable of efficiently disinfecting public spaces as well as personal protective equipment. UV light disinfection is a well-established method for inactivating respiratory viruses. Here, we have determined that broad-spectrum, pulsed UV light is effective at inactivating SARS-CoV-2 on multiple surfaces. For hard, non-porous surfaces we observed that SARS-CoV-2 was inactivated to undetectable levels on plastic and glass with a UV dose of 34.9 mJ/cm2 and stainless steel with a dose of 52.5 mJ/cm2. We also observed that broad-spectrum, pulsed UV light is effective at reducing SARS-CoV-2 on N95 respirator material to undetectable levels with a dose of 103 mJ/cm2. We included UV dosimeter cards that provide a colorimetric readout of UV dose and demonstrated their utility as a means to confirm desired levels of exposure were reached. Together, the results present here demonstrate that broad-spectrum, pulsed UV light is an effective technology for the inactivation of SARS-CoV-2 on multiple surfaces.

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 460
Author(s):  
Alexander S. Jureka ◽  
Caroline G. Williams ◽  
Christopher F. Basler

The ongoing SARS-CoV-2 pandemic has resulted in an increased need for technologies capable of efficiently disinfecting public spaces as well as personal protective equipment. UV light disinfection is a well-established method for inactivating respiratory viruses. Here, we have determined that broad-spectrum, pulsed UV light is effective at inactivating SARS-CoV-2 on multiple surfaces in vitro. For hard, non-porous surfaces, we observed that SARS-CoV-2 was inactivated to undetectable levels on plastic and glass with a UV dose of 34.9 mJ/cm2 and stainless steel with a dose of 52.5 mJ/cm2. We also observed that broad-spectrum, pulsed UV light is effective at reducing SARS-CoV-2 on N95 respirator material to undetectable levels with a dose of 103 mJ/cm2. We included UV dosimeter cards that provide a colorimetric readout of UV dose and demonstrated their utility as a means to confirm desired levels of exposure were reached. Together, the results presented here demonstrate that broad-spectrum, pulsed UV light is an effective technology for the in vitro inactivation of SARS-CoV-2 on multiple surfaces.


2012 ◽  
Vol 12 (4) ◽  
pp. 513-522 ◽  
Author(s):  
J. C. Hayes ◽  
M. Garvey ◽  
A. M. Fogarty ◽  
E. Clifford ◽  
N. J. Rowan

This constitutes the first study to compare the use of high-intensity pulsed UV light (PUV) irradiation for the novel destruction of harmful protozoan (Cryptosporidium parvum Iowa isolate) oocysts and bacterial (Clostridium perfringens ATCC 13124 and Bacillus cereus ATCC 11178) endospores in artificially-spiked water where these organisms are resistant to conventional chlorination. Experimental results revealed that all three test organisms in their dormant recalcitrant state required extended levels of pulsing to achieve significant reductions in numbers compared to other similarly PUV-treated Escherichia coli ATCC 25922 that is a non-spore forming indicator of faecal pollution in water. 120 pulses at 900 V or 16.2 J per pulse (equivalent to a UV dose of 8.39 μJ cm−2) were required to achieve ca. 2 log C. perfringens spore numbers, whereas a similar level of PUV irradiation reduced both C. parvum oocysts and B. cereus endospores by ca. 5 log orders. A comparative ca. 5 log reduction of E. coli cell numbers was achieved after only 25 pulses at 900 V (equivalent to a UV dose of 1.74 μJ cm−2). A clear trend emerged where the order of resistance to PUV-irradiation observed was C. perfringens endospores > C. parvum oocysts, B. cereus endospores > E. coli cells. This study suggests disinfection kinetic data for the more resistant C. perfringens endospores can be used as a measure of estimating disinfection efficacy of PUV treatments for C. parvum oocysts in water, avoiding the need to use complex animal or cell culture infectivity models that are only available in specialised laboratories with highly trained technicians. This study will inform future studies exploring scale-up of PUV at waste-water treatment plants.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 234
Author(s):  
Sarah Al-Beltagi ◽  
Cristian Alexandru Preda ◽  
Leah V. Goulding ◽  
Joe James ◽  
Juan Pu ◽  
...  

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG’s antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


2004 ◽  
Vol 70 (7) ◽  
pp. 3904-3909 ◽  
Author(s):  
Santiago Caballero ◽  
F. Xavier Abad ◽  
Fabienne Loisy ◽  
Françoise S. Le Guyader ◽  
Jean Cohen ◽  
...  

ABSTRACT Virus-like particles (VLPs) with the full-length VP2 and VP6 rotavirus capsid proteins, produced in the baculovirus expression system, have been evaluated as surrogates of human rotavirus in different environmental scenarios. Green fluorescent protein-labeled VLPs (GFP-VLPs) and particles enclosing a heterologous RNA (pseudoviruses), whose stability may be monitored by flow cytometry and antigen capture reverse transcription-PCR, respectively, were used. After 1 month in seawater at 20°C, no significant differences were observed between the behaviors of GFP-VLPs and of infectious rotavirus, whereas pseudovirus particles showed a higher decay rate. In the presence of 1 mg of free chlorine (FC)/liter both tracers persisted longer in freshwater at 20°C than infectious viruses, whereas in the presence of 0.2 mg of FC/liter no differences were observed between tracers and infectious rotavirus at short contact times. However, from 30 min of contact with FC onward, the decay of infectious rotavirus was higher than that of recombinant particles. The predicted Ct value for a 90% reduction of GFP-VLPs or pseudoviruses induces a 99.99% inactivation of infectious rotavirus. Both tracers were more resistant to UV light irradiation than infectious rotavirus in fresh and marine water. The effect of UV exposure was more pronounced on pseudovirus than in GFP-VLPs. In all types of water, the UV dose to induce a 90% reduction of pseudovirus ensures a 99.99% inactivation of infectious rotavirus. Recombinant virus surrogates open new possibilities for the systematic validation of virus removal practices in actual field situations where pathogenic agents cannot be introduced.


Author(s):  
Yu-Bin Dong ◽  
Luo-Gang Ding ◽  
Song Wang ◽  
Bingjian Yao ◽  
Wen-Xiu Wu ◽  
...  

As an important personal protective equipment (PPE), facemasks play an important role in self-protection during disastrous COVID-19 and other respiratory viruses pandemic. On the other hand, massive utilization of disposable...


Sign in / Sign up

Export Citation Format

Share Document