scholarly journals Pulsed Broad-Spectrum UV Light Effectively Inactivates SARS-CoV-2 on Multiple Surfaces and N95 Material

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 460
Author(s):  
Alexander S. Jureka ◽  
Caroline G. Williams ◽  
Christopher F. Basler

The ongoing SARS-CoV-2 pandemic has resulted in an increased need for technologies capable of efficiently disinfecting public spaces as well as personal protective equipment. UV light disinfection is a well-established method for inactivating respiratory viruses. Here, we have determined that broad-spectrum, pulsed UV light is effective at inactivating SARS-CoV-2 on multiple surfaces in vitro. For hard, non-porous surfaces, we observed that SARS-CoV-2 was inactivated to undetectable levels on plastic and glass with a UV dose of 34.9 mJ/cm2 and stainless steel with a dose of 52.5 mJ/cm2. We also observed that broad-spectrum, pulsed UV light is effective at reducing SARS-CoV-2 on N95 respirator material to undetectable levels with a dose of 103 mJ/cm2. We included UV dosimeter cards that provide a colorimetric readout of UV dose and demonstrated their utility as a means to confirm desired levels of exposure were reached. Together, the results presented here demonstrate that broad-spectrum, pulsed UV light is an effective technology for the in vitro inactivation of SARS-CoV-2 on multiple surfaces.

2021 ◽  
Author(s):  
Alexander S. Jureka ◽  
Caroline G. Williams ◽  
Christopher F. Basler

AbstractThe ongoing SARS-CoV-2 pandemic has resulted in an increased need for technologies capable of efficiently disinfecting public spaces as well as personal protective equipment. UV light disinfection is a well-established method for inactivating respiratory viruses. Here, we have determined that broad-spectrum, pulsed UV light is effective at inactivating SARS-CoV-2 on multiple surfaces. For hard, non-porous surfaces we observed that SARS-CoV-2 was inactivated to undetectable levels on plastic and glass with a UV dose of 34.9 mJ/cm2 and stainless steel with a dose of 52.5 mJ/cm2. We also observed that broad-spectrum, pulsed UV light is effective at reducing SARS-CoV-2 on N95 respirator material to undetectable levels with a dose of 103 mJ/cm2. We included UV dosimeter cards that provide a colorimetric readout of UV dose and demonstrated their utility as a means to confirm desired levels of exposure were reached. Together, the results present here demonstrate that broad-spectrum, pulsed UV light is an effective technology for the inactivation of SARS-CoV-2 on multiple surfaces.


2012 ◽  
Vol 12 (4) ◽  
pp. 513-522 ◽  
Author(s):  
J. C. Hayes ◽  
M. Garvey ◽  
A. M. Fogarty ◽  
E. Clifford ◽  
N. J. Rowan

This constitutes the first study to compare the use of high-intensity pulsed UV light (PUV) irradiation for the novel destruction of harmful protozoan (Cryptosporidium parvum Iowa isolate) oocysts and bacterial (Clostridium perfringens ATCC 13124 and Bacillus cereus ATCC 11178) endospores in artificially-spiked water where these organisms are resistant to conventional chlorination. Experimental results revealed that all three test organisms in their dormant recalcitrant state required extended levels of pulsing to achieve significant reductions in numbers compared to other similarly PUV-treated Escherichia coli ATCC 25922 that is a non-spore forming indicator of faecal pollution in water. 120 pulses at 900 V or 16.2 J per pulse (equivalent to a UV dose of 8.39 μJ cm−2) were required to achieve ca. 2 log C. perfringens spore numbers, whereas a similar level of PUV irradiation reduced both C. parvum oocysts and B. cereus endospores by ca. 5 log orders. A comparative ca. 5 log reduction of E. coli cell numbers was achieved after only 25 pulses at 900 V (equivalent to a UV dose of 1.74 μJ cm−2). A clear trend emerged where the order of resistance to PUV-irradiation observed was C. perfringens endospores > C. parvum oocysts, B. cereus endospores > E. coli cells. This study suggests disinfection kinetic data for the more resistant C. perfringens endospores can be used as a measure of estimating disinfection efficacy of PUV treatments for C. parvum oocysts in water, avoiding the need to use complex animal or cell culture infectivity models that are only available in specialised laboratories with highly trained technicians. This study will inform future studies exploring scale-up of PUV at waste-water treatment plants.


Author(s):  
Valeria Cagno ◽  
Chiara Medaglia ◽  
Andreas Cerny ◽  
Thomas Cerny ◽  
Caroline Tapparel ◽  
...  

ABSTRACTMethylene blue is an FDA and EMA approved drug with an excellent safety profile. It displays broad-spectrum virucidal activity in the presence of UV light and has been shown to be effective in inactivating various viruses in blood products prior to transfusions. In addition, its use has been validated for methemoglobinemia and malaria treatment. Here we show the virucidal activity of methylene blue at low micromolar concentrations and in the absence of UV activation against SARS-CoV2.


Author(s):  
Françoise Bernerd ◽  
Daniel Asselineau ◽  
Mathilde Frechet ◽  
Alain Sarasin ◽  
Thierry Magnaldo

2020 ◽  
Vol 11 ◽  
pp. 37-43
Author(s):  
Prof. Teodora P. Popova ◽  
Toshka Petrova ◽  
Ignat Ignatov ◽  
Stoil Karadzhov

The antimicrobial action of the dietary supplement Oxidal® was tested using the classic Bauer and Kirby agar-gel diffusion method. Clinical and reference strains of Staphylococcus aureus and Escherichia coli were used in the studies. The tested dietary supplement showed a well-pronounced inhibitory effect against the microbial strains commensurable with that of the broad-spectrum chemotherapeutic agent Enrofloxacin and showed even higher activity than the broad spectrum antibiotic Thiamphenicol. The proven inhibitory effect of the tested dietary supplement against the examined pathogenic bacteria is in accordance with the established clinical effectiveness standards for antimicrobial agents.


Author(s):  
Michael Russelle Alvarez ◽  
Paolo Robert Bueno ◽  
Raymond Oliver Cruz ◽  
Richard Macapulay ◽  
Francis Jayson Vallesfin ◽  
...  

Plant-derived digestive enzyme inhibitors particularly those targeted to carbohydrate metabolism has been the focus of recent studies as natural supplements for weight control and diabetes. The present study explores the salivary amylase inhibition activity of Garcinia mangostana (Linn.) pericarp extracts and Carica papaya (Linn.) leaf extracts and fractions, as well as perform phytochemical screening and quantification, and thin layer – and high performance liquid chromatographic profiling. ­Results show that crude extracts and purified fractions were able to inhibit salivary amylase, with C. papaya fraction 1 being the most active at 30.89% inhibition. Phytochemical screening of all extracts tested ­positive for tannins, glycosides, phenolics, flavonoids and alkaloids. Quantification of phenolics showed that extracts contained high levels of phenolics, with C. papaya crude extract having the highest content with 219.0±12.7 mg GAE/g extract followed by G. mangostana crude extract with 247.1±18.0 mg GAE/g extract. Quantification of total flavonoids also showed C. papaya crude extract to contain the highest content with 55.12±0.679 mg QE/g extract. All extracts contained negligible alkaloid content, though. HPLC and TLC profiling showed several peaks and bands, when viewed in 210 nm and UV light, respectively. These results demonstrate in vitro the salivary amylase inhibitory activity of both plants and their potential as antidiabetic drug candidates; however, further studies need to be done, like isolation and structure elucidation of active components and toxicity assays. Keywords: Amylase inhibition, phytochemical quantification, Carica papaya, Garcinia mangostana


Author(s):  
Nidhi Sharma ◽  
Arti Singh ◽  
Ruchika Sharma ◽  
Anoop Kumar

Aim: The aim of the study was to find out the role of auranofin as a promising broad spectrum antibacterial agent. Methods: In-vitro assays (Percentage growth retardation, Bacterial growth kinetics, Biofilm formation assay) and In-silico study (Molegro virtual docker (MVD) version 6.0 and Molecular operating environment (MOE) version 2008.10 software). Results: The in vitro assays have shown that auranofin has good antibacterial activity against Gram positive and Gram negative bacterial strains. Further, auranofin has shown synergistic activity in combination with ampicillin against S. aureus and B. subtilis whereas in combination with neomycin has just shown additive effect against E. coli, P. aeruginosa and B. pumilus. In vivo results have revealed that auranofin alone and in combination with standard drugs significantly decreased the bioburden in zebrafish infection model as compared to control. The molecular docking study have shown good interaction of auranofin with penicillin binding protein (2Y2M), topoisomerase (3TTZ), UDP-3-O-[3- hydroxymyristoyl] N-acetylglucosaminedeacetylase (3UHM), cell adhesion protein (4QRK), β-lactamase (5CTN) and arylsulphatase (1HDH) enzyme as that of reference ligand which indicate multimodal mechanism of action of auranofin. Finally, MTT assay has shown non-cytotoxic effect of auranofin. Conclusion: In conclusion, auranofin in combination with existing antibiotics could be developed as a broad spectrum antibacterial agent; however, further studies are required to confirm its safety and efficacy. This study provides possibility of use of auranofin apart from its established therapeutic indication in combination with existing antibiotics to tackle the problem of resistance.


2019 ◽  
Vol 18 (31) ◽  
pp. 2731-2740 ◽  
Author(s):  
Sandeep Tiwari ◽  
Debmalya Barh ◽  
M. Imchen ◽  
Eswar Rao ◽  
Ranjith K. Kumavath ◽  
...  

Background: Mycobacterium tuberculosis, Vibrio cholerae, and pathogenic Escherichia coli are global concerns for public health. The emergence of multi-drug resistant (MDR) strains of these pathogens is creating additional challenges in controlling infections caused by these deadly bacteria. Recently, we reported that Acetate kinase (AcK) could be a broad-spectrum novel target in several bacteria including these pathogens. Methods: Here, using in silico and in vitro approaches we show that (i) AcK is an essential protein in pathogenic bacteria; (ii) natural compounds Chlorogenic acid and Pinoresinol from Piper betel and Piperidine derivative compound 6-oxopiperidine-3-carboxylic acid inhibit the growth of pathogenic E. coli and M. tuberculosis by targeting AcK with equal or higher efficacy than the currently used antibiotics; (iii) molecular modeling and docking studies show interactions between inhibitors and AcK that correlate with the experimental results; (iv) these compounds are highly effective even on MDR strains of these pathogens; (v) further, the compounds may also target bacterial two-component system proteins that help bacteria in expressing the genes related to drug resistance and virulence; and (vi) finally, all the tested compounds are predicted to have drug-like properties. Results and Conclusion: Suggesting that, these Piper betel derived compounds may be further tested for developing a novel class of broad-spectrum drugs against various common and MDR pathogens.


Sign in / Sign up

Export Citation Format

Share Document