scholarly journals The APOBEC3A deaminase drives episodic mutagenesis in cancer cells

2021 ◽  
Author(s):  
Mia Petljak ◽  
Kevan Chu ◽  
Alexandra Dananberg ◽  
Erik N. Bergstrom ◽  
Patrick von Morgen ◽  
...  

ABSTRACTThe APOBEC3 family of cytidine deaminases is widely speculated to be a major source of somatic mutations in cancer1–3. However, causal links between APOBEC3 enzymes and mutations in human cancer cells have not been established. The identity of the APOBEC3 paralog(s) that may act as prime drivers of mutagenesis and the mechanisms underlying different APOBEC3-associated mutational signatures are unknown. To directly investigate the roles of APOBEC3 enzymes in cancer mutagenesis, candidate APOBEC3 genes were deleted from cancer cell lines recently found to naturally generate APOBEC3-associated mutations in episodic bursts4. Deletion of the APOBEC3A paralog severely diminished the acquisition of mutations of speculative APOBEC3 origins in breast cancer and lymphoma cell lines. APOBEC3 mutational burdens were undiminished in APOBEC3B knockout cell lines. APOBEC3A deletion reduced the appearance of the clustered mutation types kataegis and omikli, which are frequently found in cancer genomes. The uracil glycosylase UNG and the translesion polymerase REV1 were found to play critical roles in the generation of mutations induced by APOBEC3A. These data represent the first evidence for a long-postulated hypothesis that APOBEC3 deaminases generate prevalent clustered and non-clustered mutational signatures in human cancer cells, identify APOBEC3A as a driver of episodic mutational bursts, and dissect the roles of the relevant enzymes in generating the associated mutations in breast cancer and B cell lymphoma cell lines.

2021 ◽  
Author(s):  
John Maciejowski ◽  
Mia Petljak ◽  
Kevan Chu ◽  
Alexandra Dananberg ◽  
Erik Bergstrom ◽  
...  

Abstract The APOBEC3 family of cytidine deaminases is widely speculated to be a major source of somatic mutations in cancer1–3. However, causal links between APOBEC3 enzymes and mutations in human cancer cells have not been established. The identity of the APOBEC3 paralog(s) that may act as prime drivers of mutagenesis and the mechanisms underlying different APOBEC3-associated mutational signatures are unknown. To directly investigate the roles of APOBEC3 enzymes in cancer mutagenesis, candidate APOBEC3 genes were deleted from cancer cell lines recently found to naturally generate APOBEC3-associated mutations in episodic bursts4. Deletion of the APOBEC3A paralog severely diminished the acquisition of mutations of speculative APOBEC3 origins in breast cancer and lymphoma cell lines. APOBEC3 mutational burdens were undiminished in APOBEC3B knockout cell lines. APOBEC3A deletion reduced the appearance of the clustered mutation types kataegis and omikli, which are frequently found in cancer genomes. The uracil glycosylase UNG and the translesion polymerase REV1 were found to play critical roles in the generation of mutations induced by APOBEC3A. These data represent the first evidence for a long-postulated hypothesis that APOBEC3 deaminases generate prevalent clustered and non-clustered mutational signatures in human cancer cells, identify APOBEC3A as a driver of episodic mutational bursts, and dissect the roles of the relevant enzymes in generating the associated mutations in breast cancer and B cell lymphoma cell lines.


Author(s):  
Stepan Pilyo ◽  
Оlexandr Kozachenko ◽  
Victor Zhirnov ◽  
Maryna Kachaeva ◽  
Oleksandr Kobzar ◽  
...  

A series of new 2-aryl 5-sulfonyl-1,3-oxazole-4-carboxylates for NCI anticancer screening protocol against 60 cancer cell lines were synthesized. Screening was performed in vitro on 60 cell lines of lungs, kidneys, CNS, ovaries, prostate, and breast cancer, leukemia, and melanoma. Methyl 5-benzylsulfonyl-2-phenyl-1,3-oxazole-4-carboxylate 15 exhibited potent and broad range of cytotoxic activity against tested human cancer cells with average GI50, TGI, and LC50 values of 5.37·10-6, 1.29·10-5 and 3.6·10-5 mol/L respectively. Molecular docking was used to evaluate the possible interaction of compound 15 with tubulin as well as a complex formation with CDK2.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shigetoshi Yokoyama ◽  
Shun Nakayama ◽  
Lei Xu ◽  
Aprile L. Pilon ◽  
Shioko Kimura

AbstractNon-canonical inflammasome activation that recognizes intracellular lipopolysaccharide (LPS) causes pyroptosis, the inflammatory death of innate immune cells. The role of pyroptosis in innate immune cells is to rapidly eliminate pathogen-infected cells and limit the replication niche in the host body. Whether this rapid cell elimination process of pyroptosis plays a role in elimination of cancer cells is largely unknown. Our earlier study demonstrated that a multi-functional secreted protein, secretoglobin (SCGB) 3A2, chaperones LPS to cytosol, and activates caspase-11 and the non-canonical inflammasome pathway, leading to pyroptosis. Here we show that SCGB3A2 exhibits marked anti-cancer activity against 5 out of 11 of human non-small cell lung cancer cell lines in mouse xenographs, while no effect was observed in 6 of 6 small cell lung cancer cell lines examined. All SCGB3A2-LPS-sensitive cells express syndecan 1 (SDC1), a SCGB3A2 cell surface receptor, and caspase-4 (CASP4), a critical component of the non-canonical inflammasome pathway. Two epithelial-derived colon cancer cell lines expressing SDC1 and CASP4 were also susceptible to SCGB3A2-LPS treatment. TCGA analysis revealed that lung adenocarcinoma patients with higher SCGB3A2 mRNA levels exhibited better survival. These data suggest that SCGB3A2 uses the machinery of pyroptosis for the elimination of human cancer cells via the non-canonical inflammasome pathway, and that SCGB3A2 may serve as a novel therapeutic to treat cancer, perhaps in combination with immuno and/or targeted therapies.


Author(s):  
Yuan Qiao ◽  
Shan Zhu ◽  
Shuanglin Deng ◽  
Shan-Shan Zou ◽  
Bao Gao ◽  
...  

Pattern recognition receptors (PRRs) are germline-encoded host sensors of the innate immune system. Some human cancer cells have been reported to express PRRs. However, nucleic acid sensors in human cancers have not been studied in detail. Therefore, we systematically analyzed the expression, molecular cascade, and functions of TLR3, RIG-I, MDA5, LGP2, cGAS, and STING in human cancer cells. TLR3, TRIF, RIG-I, MDA5, LGP2, and MAVS were expressed in 22 cell lines. The majority of cell lines responded to only RIG-I ligands 5′-ppp-dsRNA, Poly(I:C)-HMW, Poly(I:C)-LMW, and/or Poly(dA:dT), as revealed by IRF3 phosphorylation and IFN-β secretion. IFN-β secretion was inhibited by RIG-I and MAVS knockdown. cGAS and STING were co-expressed in 10 of 22 cell lines, but IFN-β secretion was not induced by STING ligands ISD, HSV60, VACV70, Poly(dG:dC), and 3′3′-cGAMP in cGAS and STING intact cell lines. Further experiments revealed that the cGAS–STING pathway was activated, as revealed by TBK1 and IRF3 phosphorylation and IFN-β and ISG mRNA expression. These results suggest that human epithelial cancer cells respond to cytosolic RNA through the RIG-I–MAVS pathway but only sense cytosolic DNA through the cGAS–STING pathway. These findings are relevant for cancer immunotherapy approaches based on targeting nucleic acid receptors.


2010 ◽  
Vol 30 (8) ◽  
pp. 1083-1087 ◽  
Author(s):  
Hyung-In Moon ◽  
Okpyo Zee

In search for plant-derived cytotoxicity compound against human cancer cells (A549, SK-OV-3, SK-MEL-2, XF498, HCT15), it was found that the chloroform extracts obtained from the whole plant of Carpesium rosulatum MlQ. (Compositae) exhibited significant cytotoxic activity. Four sesquiterpene lactone, CRC1 (2α, 5-epoxy-5,10-dihydroxy-6-angeloyl-oxy-9β-isobutyloxy-germacran-8α,12-olide), CRC2 (2α,5-epoxy-5,10-dihydroxy-6α,9β-diangeloyloxy-germacran-8α,12-olide), CRC3 (2α,5-epoxy-5,10-dihydroxy-6α-angeloyloxy-9β-(3-methyl-butanoyloxy)-gemacran-8α,12-olide), CRC4 (2β,5-epoxy-5,10-dihydroxy-6α,9β-diangeloyloxy-germacran-8α,12-olide) were isolated from the whole parts of C. rosulatum. 2α,5-epoxy-5,10-dihydroxy-6α,9β-diangeloyloxy-germacran-8α,12-olide (CRC2) showed the most potent cytotoxicity with IC50 value of 6.01 μM against SK-MEL-2.


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Sooyeon Lim ◽  
Jin-Chul Ahn ◽  
Eun Jin Lee ◽  
Jongkee Kim

Abstract Sulforaphene (SFE), a major isothiocyanate in radish seeds, is a close chemical relative of sulforaphane (SFA) isolated from broccoli seeds and florets. The anti-proliferative mechanisms of SFA against cancer cells have been well investigated, but little is known about the potential anti-proliferative effects of SFE. In this study, we showed that SFE purified from radish seeds inhibited the growth of six cancer cell lines (A549, CHO, HeLa, Hepa1c1c7, HT-29, and LnCaP), with relative half maximal inhibitory concentration values ranging from 1.37 to 3.31 μg/mL. Among the six cancer cell lines, SFE showed the greatest growth inhibition against A549 lung cancer cells, where it induced apoptosis by changing the levels of poly(ADP-ribose) polymerase and caspase-3, -8, and -9. Our results indicate that SFE from radish seeds may have significant anti-proliferative potency against a broad range of human cancer cells via induction of apoptosis.


2016 ◽  
Vol 113 (16) ◽  
pp. E2258-E2266 ◽  
Author(s):  
Melanie Pribisko ◽  
Joshua Palmer ◽  
Robert H. Grubbs ◽  
Harry B. Gray ◽  
John Termini ◽  
...  

We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50 values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50 values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax = 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 >> 3 > 2 >> 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging.


Sign in / Sign up

Export Citation Format

Share Document