high cytotoxic activity
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 23)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Lydia T Navarrete-Galvan ◽  
Michael Guglielmo ◽  
Judith Cruz Amaya ◽  
Julie Smith-Gagen ◽  
Vincent C. Lombardi ◽  
...  

Abstract Background: The NK cell line NK-92 and its genetically modified variants are receiving attention as immunotherapies to treat a range of malignancies. However, since NK-92 cells are themselves tumors, they require irradiation prior to transfer and are potentially susceptible to attack by patients’ immune systems. Here, we investigated NK-92 cell-mediated serial killing for the effects of gamma-irradiation and ligation of the death receptor Fas (CD95), and NK-92 cell susceptibility to attack by activated primary blood NK cells. Methods: To evaluate serial killing, we used 51 Cr-release assays with low NK-92 effector cell to target Raji, Daudi or K562 tumor cell (E:T) ratios to determine killing frequencies at 2-, 4-, 6-, and 8-hours. Results: NK-92 cells were able to kill up to 14 Raji cells per NK-92 cell in eight hours. NK-92 cells retained high cytotoxic activity immediately after irradiation with 10 Gy but the cells surviving irradiation lost >50% activity one day after irradiation. Despite high expression of CD95, NK-92 cells maintained their viability following overnight Fas/CD95-ligation but lost some cytotoxic activity. However, one day after irradiation, NK-92 cells were more susceptible to Fas ligation, resulting in decreased cytotoxic activity of the cells surviving irradiation. Irradiated NK-92 cells were also susceptible to killing by both unstimulated and IL-2 activated primary NK cells (LAK). In contrast, non-irradiated NK-92 cells were more resistant to attack by NK and LAK cells. Conclusions: Irradiation is deleterious to both the survival and cytotoxicity mediated by NK-92 cells and renders the NK-92 cells susceptible to Fas-initiated death and death initiated by primary blood NK cells. Therefore, replacement of irradiation as an antiproliferative pretreatment and genetic deletion of Fas and/or NK activation ligands from adoptively transferred cell lines are indicated as new approaches to increase therapeutic efficacy.


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1084
Author(s):  
Natalia Vasileva ◽  
Alisa Ageenko ◽  
Maria Dmitrieva ◽  
Anna Nushtaeva ◽  
Sergey Mishinov ◽  
...  

Glioblastoma is one of the most aggressive brain tumors. Given the poor prognosis of this disease, novel methods for glioblastoma treatment are needed. Virotherapy is one of the most actively developed approaches for cancer therapy today. VV-GMCSF-Lact is a recombinant vaccinia virus with deletions of the viral thymidine kinase and growth factor genes and insertions of the granulocyte–macrophage colony-stimulating factor and oncotoxic protein lactaptin genes. The virus has high cytotoxic activity against human cancer cells of various histogenesis and antitumor efficacy against breast cancer. In this work, we show VV-GMCSF-Lact to be a promising therapeutic agent for glioblastoma treatment. VV-GMCSF-Lact effectively decreases the viability of glioblastoma cells of both immortalized and patient-derived cultures in vitro, crosses the blood–brain barrier, selectively replicates into orthotopically transplanted human glioblastoma when intravenously injected, and inhibits glioblastoma xenograft and metastasis growth when injected intratumorally.


2021 ◽  
Vol 22 (16) ◽  
pp. 8787
Author(s):  
Vladimir A. D’yakonov ◽  
Ilgiz I. Islamov ◽  
Lilya U. Dzhemileva ◽  
Elina Kh. Makarova ◽  
Usein M. Dzhemilev

An original synthetic route was developed for the preparation of previously unknown unsaturated polyaromatic macrolactones containing a 1Z,5Z-diene moiety in 48–71% yields and with >98% stereoselectivity. The method is based on intermolecular cyclocondensation of aromatic dicarboxylic acids with α,ω-alka-nZ,(n+4)Z-dienediols (1,12-dodeca-4Z,8Z-dienediol, 1,14-tetradeca-5Z,9Z-dienediol, 1,18-octadeca-7Z,11Z-dienediol) mediated by N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/4-dimethylaminopyridine (DMAP). The unsaturated diols were prepared by successive homo-cyclomagnesiation of tetrahydropyran ethers of O-containing 1,2-dienes with EtMgBr in the presence of Mg metal and the Cp2TiCl2 catalyst (10 mol.%) and subsequent treatment with 0.1 equiv. of para-toluenesulfonic acid of pyran ethers formed after the acid hydrolysis of magnesacyclopentanes. The resulting cyclophanes exhibited high cytotoxic activity in vitro against Jurkat, K562, U937, and HL60 cancer lines. Additionally, the synthesized products were studied for their effect on mitochondria, ability to induce apoptosis, and influence on the cell cycle using modern flow cytometry methods.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mariana Nobre Farias de Franca ◽  
Raquel Geralda Isidório ◽  
João Henrique Oliveira Bonifacio ◽  
Edmilson Willian Propheta dos Santos ◽  
Jileno Ferreira Santos ◽  
...  

Abstract Background Melanoma is a malignant cancer that affects melanocytes and is considered the most aggressive skin-type cancer. The prevalence for melanoma cancer for the last five year is about one million cases. The impact caused of this and other types of cancer, revel the importance of research into potential active compounds. The natural products are an important source of compounds with biological activity and research with natural products may enable the discovery of compounds with potential activity in tumor cells. Methods The Sulforhodamine B was used to determine cell density after treatment with lawsone derivatives. Apoptosis and necrosis were analyzed by flow cytometer. Morphological changes were observed by fluorescence using the Phalloidin/FITC and DAPI stains. The clonogenic and wound healing assays were used to analyze reduction of colonies formation and migratory capacity of melanoma cells, respectability. Results In pharmacological screening, seven compounds derived from lawsone were considered to have high cytotoxic activity (GI > 75%). Three compounds were selected to assess the inhibitory concentration for 50% of cells (IC50), and the compound 9, that has IC50 5.3 μM in melanoma cells, was selected for further analyses in this cell line. The clonogenic assay showed that the compound is capable of reducing the formation of melanoma colonies at 10.6 μM concentration. The compound induced apoptotic morphological changes in melanoma cells and increased by 50% the cells dying from apoptosis. Also, this compound reduced the migratory capacity of melanoma cells. Conclusions The results of this study showed that the evaluated lawsone derivatives have potential activity on tumor cells. The compound 9 is capable of inducing cell death by apoptosis in melanoma cells (B16F10).


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2961
Author(s):  
Eman M. Othman ◽  
Amany A. Bekhit ◽  
Mohamed A. Anany ◽  
Thomas Dandekar ◽  
Hanan M. Ragab ◽  
...  

The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells.


2021 ◽  
Vol 17 (1) ◽  
pp. 10
Author(s):  
Ghina Uli Felicia Tambunan ◽  
Nurlelasari Nurlelasari ◽  
Shabarni Gaffar

<p>Indonesia merupakan negara yang kaya akan keanekaragaman hayati. Terdapat banyak tanaman yang mengandung senyawa metabolit sekunder yang memiliki aktivitas biologi sehingga berpotensi untuk digunakan sebagai obat, salah satunya adalah genus <em>Chisocheton</em>. Tanaman genus <em>Chisocheton </em>sudah banyak dilaporkan mengandung senyawa triterpenoid, seskuiterpenoid, limonoid, steroid, dan fenol. Limonoid merupakan turunan triterpenoid yang paling banyak ditemukan pada tanaman genus <em>Chisocheton</em>. Lebih dari tiga puluh senyawa golongan limonoid telah diuji aktivitas antikankernya terhadap beberapa jenis sel kanker manusia, seperti sel kanker payudara, mulut, paru-paru, leukimia, serviks, dan hati. Beberapa senyawa limonid tersebut diketahui memiliki aktivitas sitotoksik yang tinggi dengan kisaran nilai IC<sub>50</sub> 1,67 − 50,27 µg/mL. Review ini memaparkan beberapa senyawa limonoid yang diisolasi dari genus <em>Chisocheton</em>, aktivitas sitotoksiknya terhadap sel-sel kanker manusia, serta hubungan struktur dan aktifitas biologisnya (SAR = <em>Structure Activity Relationship</em>). Selain itu beberapa penelitian juga sudah melakukan penelitian lebih lanjut seperti pengujian induksi apoptosis dan penentuan tingkat ekspresi gen-gen yang berhubungan dengan apoptosis. Penelitian-penelitian yang dilakukan ini mengarah pada pencarian senyawa baru yang dapat digunakan sebagai <em>lead compound</em> untuk mendapatkan obat antikanker yang efektif.</p><p><strong></strong><strong>Limonoid Compounds from Genus <em>Chisocheton </em>Plant and Its Anticancer Activity. </strong>Indonesia is a country with a large biodiversity. There are many plants contain secondary metabolite compounds with biological activity, such as <em>Chisocheton</em> genus. The <em>Chisocheton</em> is reported as plant with triterpenoids, sesquiterpenoids, limonoids, steroids and phenols content. Limonoids arethe derivative of triterpenoid which mostly found in <em>Chisocheton</em> genus. More than thirty limonoids have been studied for their anticancer activity against several types of human cancer cells, such as breast, mouth, lung, leukemia, cervical, and liver cancer cells. Some of these limonoids are known to have high cytotoxic activity with the IC<sub>50</sub> values of 1.67 − 50.27 µg/mL. This review discuss many kind of limonoid compounds isolated from <em>Chisocheton</em>, their cytotoxic activity against human cancer cells, and their structural activity relationship (SAR) study. This review also discusses some research result for further studies of <em>Chisocheton</em> wether in the mechanism of apoptosis induction and also the determination genes level expression or proteins associated with the apoptosis. This review reveals the important of the study to find a new compounds for an effective anticancer drug.</p>


Planta Medica ◽  
2020 ◽  
Author(s):  
Paula Carolina Pires Bueno ◽  
Luis Francisco Salomé Abarca ◽  
Naira Buzzo Anhesine ◽  
Maíra Silva Giffoni ◽  
Fabiola Manhas Verbi Pereira ◽  
...  

Abstract Casearia sylvestris is an outstanding representative of the Casearia genus. This representability comes from its distinctive chemical profile and pharmacological properties. This species is widespread from North to South America, occurring in all Brazilian biomes. Based on their morphology, 2 varieties are recognized: C. sylvestris var. sylvestris and C. sylvestris var. lingua. Despite the existence of data about their chemical composition, a deeper understanding of the specialized metabolism correlation and variation in respect to environmental factors and its repercussion over their biological activities was still pending. In this study, an UHPLC-DAD-based metabolomics approach was employed for the investigation of the chemical variation of 12 C. sylvestris populations sampled across 4 Brazilian biomes and ecotones. The correlation between infraspecific chemical variability and the cytotoxic and antioxidant activities was achieved by multivariate data analysis. The analyses showed that C. sylvestris var. lingua prevailed at Cerrado areas, and it was correlated with lower cytotoxic activity and high level of glycosylated flavonoids. Among them, narcissin and isorhamnetin-3-O-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranoside showed good correlation with the antioxidant activity. Conversely, C. sylvestris var. sylvestris prevailed at the Atlantic Forest areas, and it was associated with high cytotoxic activity and high content of clerodane diterpenoids. Different casearins showed good correlation (R2  = 0.3 – 0.70) with the cytotoxic activity. These findings highlighted the great complexity among different C. sylvestris populations, their chemical profile, and the related biological activities. Consequently, it can certainly influence the medicinal properties, as well as the quality and efficacy, of C. sylvestris phytomedicines.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3577
Author(s):  
Yuri E. Sabutski ◽  
Ekaterina S. Menchinskaya ◽  
Ludmila S. Shevchenko ◽  
Ekaterina A. Chingizova ◽  
Artur R. Chingizov ◽  
...  

A series of new tetracyclic oxathiine-fused quinone-thioglycoside conjugates based on biologically active 1,4-naphthoquinones and 1-mercapto derivatives of per-O-acetyl d-glucose, d-galactose, d-xylose, and l-arabinose have been synthesized, characterized, and evaluated for their cytotoxic and antimicrobial activities. Six tetracyclic conjugates bearing a hydroxyl group in naphthoquinone core showed high cytotoxic activity with EC50 values in the range of 0.3 to 0.9 μM for various types of cancer and normal cells and no hemolytic activity up to 25 μM. The antimicrobial activity of conjugates was screened against Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus), Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), and fungus Candida albicans by the agar diffusion method. The most effective juglone conjugates with d-xylose or l-arabinose moiety and hydroxyl group at C-7 position of naphthoquinone core at concentration 10 µg/well showed antimicrobial activity comparable with antibiotics vancomicin and gentamicin against Gram-positive bacteria strains. In liquid media, juglone-arabinosidic tetracycles showed highest activity with MIC 6.25 µM. Thus, a positive effect of heterocyclization with mercaptosugars on cytotoxic and antimicrobial activity for group of 1,4-naphthoquinones was shown.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3540
Author(s):  
Julia Krzywik ◽  
Maral Aminpour ◽  
Ewa Maj ◽  
Witold Mozga ◽  
Joanna Wietrzyk ◽  
...  

Colchicine is a well-known anticancer compound showing antimitotic effect on cells. Its high cytotoxic activity against different cancer cell lines has been demonstrated many times. In this paper we report the syntheses and spectroscopic analyses of novel colchicine derivatives obtained by structural modifications at C7 (carbon-nitrogen single bond) and C10 (methylamino group) positions. All the obtained compounds have been tested in vitro to determine their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX, and BALB/3T3 cell lines. The majority of obtained derivatives exhibited higher cytotoxicity than colchicine, doxorubicin and cisplatin against the tested cancerous cell lines. Additionally, most of the presented derivatives were able to overcome the resistance of LoVo/DX cells. Additionally, their mode of binding to β-tubulin was evaluated in silico. Molecular docking studies showed that apart from the initial amides 1 and 2, compound 14, which had the best antiproliferative activity (IC50 = 0.1–1.6 nM), stood out also in terms of its predicted binding energy and probably binds best into the active site of βI-tubulin isotype.


2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Jaione Auzmendi-Iriarte ◽  
Ander Saenz-Antoñanzas ◽  
Idoia Mikelez-Alonso ◽  
Estefania Carrasco-Garcia ◽  
Maitena Tellaetxe-Abete ◽  
...  

Abstract Histone deacetylase 6 (HDAC6) is an epigenetic modifier that is an attractive pharmacological target in cancer. In this work, we show that HDAC6 is elevated in glioblastoma, the most malignant and common brain tumor in adults, in which its high levels correlate with poor patient survival and is more abundant in glioma stem cell subpopulation. Moreover, we identified a new small-molecule inhibitor of HDAC6, which presents strong sensitivity for HDAC6 inhibition and exerts high cytotoxic activity, alone or in combination with temozolomide. It is also able to significantly reduce tumor growth in vivo. Transcriptomic analysis of patient-derived glioma stem cells revealed an increase in cell differentiation and cell death pathways, as well as a decrease in cell-cycle activity and cell division by the treatment with the compound. Finally, the comparison with a pan-HDAC inhibitor, Vorinostat (SAHA), or HDAC6-specific inhibitor, Tubastatin A, showed higher target specificity and antitumor activity of the new HDAC6 inhibitor. In conclusion, our data reveal the efficacy of a novel HDAC6 inhibitor in glioblastoma preclinical setting.


Sign in / Sign up

Export Citation Format

Share Document