scholarly journals Fluorescence Imaging-Based Discovery of Membrane Domain-Associated Proteins in Mycobacterium smegmatis

2021 ◽  
Author(s):  
Corelle A. Z. Rokicki ◽  
James R. Brenner ◽  
Alexander Dills ◽  
Julius J. Judd ◽  
Jemila C. Kester ◽  
...  

AbstractMycobacteria spatially organize their plasma membrane, and many enzymes involved in envelope biosynthesis associate with a membrane compartment termed the intracellular membrane domain (IMD). The IMD is concentrated in the polar regions of growing cells and becomes less polarized under non-growing conditions. Because mycobacteria elongate from the poles, the observed polar localization of the IMD during growth likely supports the localized envelope biosynthesis. While we have identified more than 300 IMD-associated proteins by proteomic analyses, only a handful of these have been verified by other experimental methods. Furthermore, we speculate that some IMD-associated proteins may have escaped proteomic identification and remain to be identified. Here, we visually screened an arrayed library of 523 Mycobacterium smegmatis strains each expressing a Dendra2-FLAG-tagged recombinant protein. We identified 29 fusion proteins that showed fluorescence patterns similar to those of IMD proteins and, consistent with this co-localization, we had previously identified 20 of these using a proteomics approach. Of the nine remaining IMD candidate proteins, three were confirmed to be associated with the IMD while some others appear to be lipid droplet-associated. Taken together, our newly devised strategy is effective in verifying the IMD association of proteins found by proteomic analyses, while facilitating the discovery of additional IMD-associated proteins.ImportanceThe intracellular membrane domain (IMD) is a membrane subcompartment found in Mycobacterium smegmatis cells. Proteomic analysis of purified IMD identified more than 300 proteins, including enzymes involved in cell envelope biosynthesis, that likely contribute to the function of the IMD. How can we find more IMD-associated proteins that escaped proteomic detection? Here, as an alternative approach, fluorescence microscope images of 523 proteins were screened to identify IMD-associated proteins. We confirmed the IMD association of previously identified proteins and discovered three additional proteins associated with the IMD. Together, subcellular fractionation, proteomics, and fluorescence microscopy form a robust combination to more rigorously define IMD proteins, which will aid future investigations to decipher the synthesis, maintenance and functions of this membrane domain.

2021 ◽  
Author(s):  
Corelle A. Z. Rokicki ◽  
James R. Brenner ◽  
Alexander H. Dills ◽  
Julius J. Judd ◽  
Jemila C. Kester ◽  
...  

Mycobacteria spatially organize their plasma membrane, and many enzymes involved in envelope biosynthesis associate with a membrane compartment termed the intracellular membrane domain (IMD). The IMD is concentrated in the polar regions of growing cells and becomes less polarized under non-growing conditions. Because mycobacteria elongate from the poles, the observed polar localization of the IMD during growth likely supports the localized biosynthesis of envelope components. While we have identified more than 300 IMD-associated proteins by proteomic analyses, only a handful of these have been verified by independent experimental methods. Furthermore, some IMD-associated proteins may have escaped proteomic identification and remain to be identified. Here, we visually screened an arrayed library of 523 Mycobacterium smegmatis strains, each producing a Dendra2-FLAG-tagged recombinant protein. We identified 29 fusion proteins that showed polar fluorescence patterns characteristic of IMD proteins. Twenty of these had previously been suggested to localize to the IMD based on proteomic data. Of the nine remaining IMD candidate proteins, three were confirmed by biochemical methods to be associated with the IMD. Taken together, this new co-localization strategy is effective in verifying the IMD association of proteins found by proteomic analyses, while facilitating the discovery of additional IMD-associated proteins. Importance The intracellular membrane domain (IMD) is a membrane subcompartment found in Mycobacterium smegmatis cells. Proteomic analysis of purified IMD identified more than 300 proteins, including enzymes involved in cell envelope biosynthesis. However, proteomics on its own is unlikely to detect every IMD-associated protein because of technical and biological limitations. Here, we describe fluorescent protein co-localization as an alternative, independent approach. Using a combination of fluorescence microscopy, proteomics, and subcellular fractionation, we identified three new proteins associated with the IMD. Such a robust method to rigorously define IMD proteins will benefit future investigations to decipher the synthesis, maintenance and functions of this membrane domain, and help delineate a more general mechanisms of subcellular protein localization in mycobacteria.


2022 ◽  
Author(s):  
Julia Puffal ◽  
Ian L. Sparks ◽  
James R. Brenner ◽  
Xuni Li ◽  
John D. Leszyk ◽  
...  

The intracellular membrane domain (IMD) is a metabolically active and laterally discrete membrane domain initially discovered in Mycobacterium smegmatis. The IMD correlates both temporally and spatially with the polar cell envelope elongation in M. smegmatis. Whether or not a similar membrane domain exists in pathogenic species remains unknown. Here we show that the IMD is a conserved membrane structure found in Mycobacterium tuberculosis. We used two independent approaches, density gradient fractionation of membrane domains and visualization of IMD-associated proteins through fluorescence microscopy, to determine the characteristics of the plasma membrane compartmentalization in M. tuberculosis. Proteomic analysis revealed that the IMD is enriched in metabolic enzymes that are involved in the synthesis of conserved cell envelope components such as peptidoglycan, arabinogalactan, and phosphatidylinositol mannosides. Using a fluorescent protein fusion of IMD-associated proteins, we demonstrated that this domain is concentrated in the polar region of the rod-shaped cells, where active cell envelope biosynthesis is taking place. Proteomic analysis further revealed the enrichment of enzymes involved in synthesis of phthiocerol dimycocerosates and phenolic glycolipids in the IMD. We validated the IMD association of two enzymes, α1,3-fucosyltransferase and fucosyl 4-O-methyltransferase, which are involved in the final maturation steps of phenolic glycolipid biosynthesis. Taken together, these data indicate that functional compartmentalization of membrane is an evolutionarily conserved feature found in both M. tuberculosis and M. smegmatis, and M. tuberculosis utilizes this membrane location for the synthesis of its surface-exposed lipid virulence factors.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1377
Author(s):  
Adriano M. Gigante ◽  
Francisco Olivença ◽  
Maria João Catalão ◽  
Paula Leandro ◽  
José Moniz-Pereira ◽  
...  

Double-stranded DNA bacteriophages end their lytic cycle by disrupting the host cell envelope, which allows the release of the virion progeny. Each phage must synthesize lysis proteins that target each cell barrier to phage release. In addition to holins, which permeabilize the cytoplasmic membrane, and endolysins, which disrupt the peptidoglycan (PG), mycobacteriophages synthesize a specific lysis protein, LysB, capable of detaching the outer membrane from the complex cell wall of mycobacteria. The family of LysB proteins is highly diverse, with many members presenting an extended N-terminus. The N-terminal region of mycobacteriophage Ms6 LysB shows structural similarity to the PG-binding domain (PGBD) of the φKZ endolysin. A fusion of this region with enhanced green fluorescent protein (Ms6LysBPGBD-EGFP) was shown to bind to Mycobacterium smegmatis, Mycobacterium vaccae, Mycobacterium bovis BGC and Mycobacterium tuberculosis H37Ra cells pretreated with SDS or Ms6 LysB. In pulldown assays, we demonstrate that Ms6 LysB and Ms6LysBPGBD-EGFP bind to purified peptidoglycan of M. smegmatis, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, demonstrating affinity to PG of the A1γ chemotype. An infection assay with an Ms6 mutant producing a truncated version of LysB lacking the first 90 amino acids resulted in an abrupt lysis. These results clearly demonstrate that the N-terminus of Ms6 LysB binds to the PG.


1989 ◽  
Vol 94 (3) ◽  
pp. 489-500
Author(s):  
D.A. Rayner ◽  
A.J. Baines

A Mr 60,000 protein of the axonal cortical cytoplasm, which is recognized by a novel monoclonal antibody, is described. The antibody, DR1, was produced by immunizing mice with a soluble extract of bovine brain membranes that is enriched in known membrane cytoskeletal proteins. DR1 recognizes a Mr 60,000 protein in this extract. Immunofluorescence and subcellular fractionation reveal that the protein is primarily located in axons, where it appears to form a thick lining to the axolemma. Operationally, this Mr 60,000 protein is defined as a cytoskeleton-associated peripheral membrane protein. It is solubilized from brain membranes only under harsh conditions (0.1 M-NaOH), but not with KI (0.8 M) or Triton X-100 (1%). It is present at higher levels in the central nervous system than in peripheral nerves that have been examined. The Mr 60,000 protein copurifies with neurofilaments through cycles of assembly and disassembly. It does not appear to react with the anti-IFA antibody, suggesting that it is not a member of the intermediate filament class of proteins. This Mr 60,000 protein, which we designate A60, is distinct from other known neurofilament-associated proteins, including the Mr 60,000 protein alpha-internexin and the Mr 58,000 intermediate filament protein peripherin. A60 is suggested as being a previously unrecognized component of the axonal cortical cytoskeleton.


2019 ◽  
Vol 294 (26) ◽  
pp. 10325-10335 ◽  
Author(s):  
Zuzana Palčeková ◽  
Shiva K. Angala ◽  
Juan Manuel Belardinelli ◽  
Haig A. Eskandarian ◽  
Maju Joe ◽  
...  

PROTEOMICS ◽  
2006 ◽  
Vol 6 (5) ◽  
pp. 1530-1549 ◽  
Author(s):  
Christine L. Gatlin ◽  
Rembert Pieper ◽  
Shih-Ting Huang ◽  
Emmanuel Mongodin ◽  
Elizabeth Gebregeorgis ◽  
...  

1994 ◽  
Vol 77 (4) ◽  
pp. 1597-1601 ◽  
Author(s):  
J. Gao ◽  
J. Ren ◽  
E. A. Gulve ◽  
J. O. Holloszy

The maximal effects of insulin and muscle contractions on glucose transport are additive. GLUT-4 is the major glucose transporter isoform expressed in skeletal muscle. Muscle contraction and insulin each induce translocation of GLUT-4 from intracellular sites into the plasma membrane. The purpose of this study was to test the hypothesis that the incremental effect of contractions and insulin on glucose transport is mediated by additivity of the maximal effects of these stimuli on GLUT-4 translocation into the sarcolemma. Anesthetized rats were given insulin by intravenous infusion to raise plasma insulin to 2,635 +/- 638 microU/ml. The gastrocnemius-plantaris-soleus group was stimulated to contract via the sciatic nerve by using a protocol that maximally activates glucose transport. After treatment with insulin, contractions, or insulin plus contractions or no treatment, the gastrocnemius-plantaris-soleus muscle group was dissected out and was subjected to subcellular fractionation to separate the plasma membrane and intracellular membrane fractions. Insulin induced a 70% increase and contractions induced a 113% increase in the GLUT-4 content of the plasma membrane fraction. The effects of insulin and contractions were additive, as evidenced by a 185% increase in the GLUT-4 content of the sarcolemmal fraction. This finding provides evidence that the incremental effect of maximally effective insulin and contractile stimuli on glucose transport is mediated by additivity of their effects on GLUT-4 translocation into the sarcolemma.


2018 ◽  
Vol 475 (15) ◽  
pp. 2473-2489
Author(s):  
Dipanwita Bhattacharya ◽  
Kanchan Sinha ◽  
Dulal Panda

The role of FtsZ-associated proteins in the regulation of the assembly dynamics of Mycobacterium smegmatis FtsZ is not clear. In this work, we examined the effect of M. smegmatis SepF on the assembly and stability of M. smegmatis FtsZ polymers. We discovered a single dominant point mutation in SepF (G51D or G51R) that renders the protein inactive. SepF promoted the polymerization of FtsZ, induced the bundling of FtsZ filaments, stabilized FtsZ filaments and reduced the GTPase activity of FtsZ. Surprisingly, both G51D-SepF and G51R-SepF neither stabilized FtsZ filaments nor showed a discernable effect on the GTPase activity of FtsZ. The binding affinity of SepF to FtsZ was found to be stronger than the binding affinity of G51R/D-SepF to FtsZ. Interestingly, the binding affinity of SepF to G51R-SepF was determined to be 45 times stronger than FtsZ. In addition, the interaction of SepF with G51R-SepF was found to be 2.6 times stronger than SepF–SepF interaction. Furthermore, G51R-SepF impaired the ability of SepF to promote the assembly of FtsZ. In addition, the overexpression of G51R-SepF in M. smegmatis mc2 155 cells retarded the proliferation of these cells and increased the average length of the cells. The results indicated that SepF positively regulates the assembly of M. smegmatis FtsZ and the G51 residue has an important role in the functioning of SepF.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Rahul Pal ◽  
Saif Hameed ◽  
Zeeshan Fatima

Multidrug resistance (MDR) acquired byMycobacterium tuberculosis(MTB) through continuous deployment of antitubercular drugs warrants immediate search for novel targets and mechanisms. The ability of MTB to sense and become accustomed to changes in the host is essential for survival and confers the basis of infection. A crucial condition that MTB must surmount is iron limitation, during the establishment of infection, since iron is required by both bacteria and humans. This study focuses on how iron deprivation affects drug susceptibilities of known anti-TB drugs inMycobacterium smegmatis, a “surrogate of MTB.” We showed that iron deprivation leads to enhanced potency of most commonly used first line anti-TB drugs that could be reverted upon iron supplementation. We explored that membrane homeostasis is disrupted upon iron deprivation as revealed by enhanced membrane permeability and hypersensitivity to membrane perturbing agent leading to increased passive diffusion of drug and TEM images showing detectable differences in cell envelope thickness. Furthermore, iron seems to be indispensable to sustain genotoxic stress suggesting its possible role in DNA repair machinery. Taken together, we for the first time established a link between cellular iron and drug susceptibility of mycobacteria suggesting iron as novel determinant to combat MDR.


Sign in / Sign up

Export Citation Format

Share Document