scholarly journals Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders

2021 ◽  
Author(s):  
Matthew R Whiteway ◽  
Dan Biderman ◽  
Yoni Friedman ◽  
Mario Dipoppa ◽  
E. Kelly Buchanan ◽  
...  

AbstractRecent neuroscience studies in awake and behaving animals demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from this video data. In this work we introduce a new semi-supervised framework that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this method, the Partitioned Subspace Variational Autoencoder (PS-VAE), on head-fixed mouse behavioral videos. In a close up video of a mouse face, where we track pupil location and size, our method extracts unsupervised outputs that correspond to the eyelid and whisker pad positions, with no additional user annotations required. We use this resulting interpretable behavioral representation to construct saccade and whisking detectors, and quantify the accuracy with which these signals can be decoded from neural activity in visual cortex. In a two-camera mouse video we show how our method separates movements of experimental equipment from animal behavior, and extracts unsupervised features like chest position, again with no additional user annotation needed. This allows us to construct paw and body movement detectors, and decode individual features of behavior from widefield calcium imaging data. Our results demonstrate how the interpretable partitioning of behavioral videos provided by the PS-VAE can facilitate downstream behavioral and neural analyses.

2021 ◽  
Vol 17 (9) ◽  
pp. e1009439
Author(s):  
Matthew R. Whiteway ◽  
Dan Biderman ◽  
Yoni Friedman ◽  
Mario Dipoppa ◽  
E. Kelly Buchanan ◽  
...  

Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.


2018 ◽  
Author(s):  
E. Kelly Buchanan ◽  
Ian Kinsella ◽  
Ding Zhou ◽  
Rong Zhu ◽  
Pengcheng Zhou ◽  
...  

Calcium imaging has revolutionized systems neuroscience, providing the ability to image large neural populations with single-cell resolution. The resulting datasets are quite large (with scales of TB/hour in some cases), which has presented a barrier to routine open sharing of this data, slowing progress in reproducible research. State of the art methods for analyzing this data are based on non-negative matrix factorization (NMF); these approaches solve a non-convex optimization problem, and are highly effective when good initializations are available, but can break down e.g. in low-SNR settings where common initialization approaches fail. Here we introduce an improved approach to compressing and denoising functional imaging data. The method is based on a spatially-localized penalized matrix decomposition (PMD) of the data to separate (low-dimensional) signal from (temporally-uncorrelated) noise. This approach can be applied in parallel on local spatial patches and is therefore highly scalable, does not impose non-negativity constraints or require stringent identifiability assumptions (leading to significantly more robust results compared to NMF), and estimates all parameters directly from the data, so no hand-tuning is required. We have applied the method to a wide range of functional imaging data (including one-photon, two-photon, three-photon, widefield, somatic, axonal, dendritic, calcium, and voltage imaging datasets): in all cases, we observe ~2-4x increases in SNR and compression rates of 20-300x with minimal visible loss of signal, with no adjustment of hyperparameters; this in turn facilitates the process of demixing the observed activity into contributions from individual neurons. We focus on two challenging applications: dendritic calcium imaging data and voltage imaging data in the context of optogenetic stimulation. In both cases, we show that our new approach leads to faster and much more robust extraction of activity from the video data.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joshua T. Vogelstein ◽  
Eric W. Bridgeford ◽  
Minh Tang ◽  
Da Zheng ◽  
Christopher Douville ◽  
...  

AbstractTo solve key biomedical problems, experimentalists now routinely measure millions or billions of features (dimensions) per sample, with the hope that data science techniques will be able to build accurate data-driven inferences. Because sample sizes are typically orders of magnitude smaller than the dimensionality of these data, valid inferences require finding a low-dimensional representation that preserves the discriminating information (e.g., whether the individual suffers from a particular disease). There is a lack of interpretable supervised dimensionality reduction methods that scale to millions of dimensions with strong statistical theoretical guarantees. We introduce an approach to extending principal components analysis by incorporating class-conditional moment estimates into the low-dimensional projection. The simplest version, Linear Optimal Low-rank projection, incorporates the class-conditional means. We prove, and substantiate with both synthetic and real data benchmarks, that Linear Optimal Low-Rank Projection and its generalizations lead to improved data representations for subsequent classification, while maintaining computational efficiency and scalability. Using multiple brain imaging datasets consisting of more than 150 million features, and several genomics datasets with more than 500,000 features, Linear Optimal Low-Rank Projection outperforms other scalable linear dimensionality reduction techniques in terms of accuracy, while only requiring a few minutes on a standard desktop computer.


2020 ◽  
Vol 49 (3) ◽  
pp. 421-437
Author(s):  
Genggeng Liu ◽  
Lin Xie ◽  
Chi-Hua Chen

Dimensionality reduction plays an important role in the data processing of machine learning and data mining, which makes the processing of high-dimensional data more efficient. Dimensionality reduction can extract the low-dimensional feature representation of high-dimensional data, and an effective dimensionality reduction method can not only extract most of the useful information of the original data, but also realize the function of removing useless noise. The dimensionality reduction methods can be applied to all types of data, especially image data. Although the supervised learning method has achieved good results in the application of dimensionality reduction, its performance depends on the number of labeled training samples. With the growing of information from internet, marking the data requires more resources and is more difficult. Therefore, using unsupervised learning to learn the feature of data has extremely important research value. In this paper, an unsupervised multilayered variational auto-encoder model is studied in the text data, so that the high-dimensional feature to the low-dimensional feature becomes efficient and the low-dimensional feature can retain mainly information as much as possible. Low-dimensional feature obtained by different dimensionality reduction methods are used to compare with the dimensionality reduction results of variational auto-encoder (VAE), and the method can be significantly improved over other comparison methods.


2019 ◽  
Vol 9 (13) ◽  
pp. 2699 ◽  
Author(s):  
Boeun Kim ◽  
Saim Shin ◽  
Hyedong Jung

Image captioning is a promising research topic that is applicable to services that search for desired content in a large amount of video data and a situation explanation service for visually impaired people. Previous research on image captioning has been focused on generating one caption per image. However, to increase usability in applications, it is necessary to generate several different captions that contain various representations for an image. We propose a method to generate multiple captions using a variational autoencoder, which is one of the generative models. Because an image feature plays an important role when generating captions, a method to extract a Caption Attention Map (CAM) of the image is proposed, and CAMs are projected to a latent distribution. In addition, methods for the evaluation of multiple image captioning tasks are proposed that have not yet been actively researched. The proposed model outperforms in the aspect of diversity compared with the base model when the accuracy is comparable. Moreover, it is verified that the model using CAM generates detailed captions describing various content in the image.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yoshihiro Nagano ◽  
Ryo Karakida ◽  
Masato Okada

Abstract Deep neural networks are good at extracting low-dimensional subspaces (latent spaces) that represent the essential features inside a high-dimensional dataset. Deep generative models represented by variational autoencoders (VAEs) can generate and infer high-quality datasets, such as images. In particular, VAEs can eliminate the noise contained in an image by repeating the mapping between latent and data space. To clarify the mechanism of such denoising, we numerically analyzed how the activity pattern of trained networks changes in the latent space during inference. We considered the time development of the activity pattern for specific data as one trajectory in the latent space and investigated the collective behavior of these inference trajectories for many data. Our study revealed that when a cluster structure exists in the dataset, the trajectory rapidly approaches the center of the cluster. This behavior was qualitatively consistent with the concept retrieval reported in associative memory models. Additionally, the larger the noise contained in the data, the closer the trajectory was to a more global cluster. It was demonstrated that by increasing the number of the latent variables, the trend of the approach a cluster center can be enhanced, and the generalization ability of the VAE can be improved.


Author(s):  
Akira Imakura ◽  
Momo Matsuda ◽  
Xiucai Ye ◽  
Tetsuya Sakurai

Dimensionality reduction methods that project highdimensional data to a low-dimensional space by matrix trace optimization are widely used for clustering and classification. The matrix trace optimization problem leads to an eigenvalue problem for a low-dimensional subspace construction, preserving certain properties of the original data. However, most of the existing methods use only a few eigenvectors to construct the low-dimensional space, which may lead to a loss of useful information for achieving successful classification. Herein, to overcome the deficiency of the information loss, we propose a novel complex moment-based supervised eigenmap including multiple eigenvectors for dimensionality reduction. Furthermore, the proposed method provides a general formulation for matrix trace optimization methods to incorporate with ridge regression, which models the linear dependency between covariate variables and univariate labels. To reduce the computational complexity, we also propose an efficient and parallel implementation of the proposed method. Numerical experiments indicate that the proposed method is competitive compared with the existing dimensionality reduction methods for the recognition performance. Additionally, the proposed method exhibits high parallel efficiency.


2020 ◽  
Author(s):  
Aditya Arie Nugraha ◽  
Kouhei Sekiguchi ◽  
Kazuyoshi Yoshii

This paper describes a deep latent variable model of speech power spectrograms and its application to semi-supervised speech enhancement with a deep speech prior. By integrating two major deep generative models, a variational autoencoder (VAE) and a normalizing flow (NF), in a mutually-beneficial manner, we formulate a flexible latent variable model called the NF-VAE that can extract low-dimensional latent representations from high-dimensional observations, akin to the VAE, and does not need to explicitly represent the distribution of the observations, akin to the NF. In this paper, we consider a variant of NF called the generative flow (GF a.k.a. Glow) and formulate a latent variable model called the GF-VAE. We experimentally show that the proposed GF-VAE is better than the standard VAE at capturing fine-structured harmonics of speech spectrograms, especially in the high-frequency range. A similar finding is also obtained when the GF-VAE and the VAE are used to generate speech spectrograms from latent variables randomly sampled from the standard Gaussian distribution. Lastly, when these models are used as speech priors for statistical multichannel speech enhancement, the GF-VAE outperforms the VAE and the GF.


2017 ◽  
Author(s):  
Peiran Gao ◽  
Eric Trautmann ◽  
Byron Yu ◽  
Gopal Santhanam ◽  
Stephen Ryu ◽  
...  

AbstractIn many experiments, neuroscientists tightly control behavior, record many trials, and obtain trial-averaged firing rates from hundreds of neurons in circuits containing billions of behaviorally relevant neurons. Di-mensionality reduction methods reveal a striking simplicity underlying such multi-neuronal data: they can be reduced to a low-dimensional space, and the resulting neural trajectories in this space yield a remarkably insightful dynamical portrait of circuit computation. This simplicity raises profound and timely conceptual questions. What are its origins and its implications for the complexity of neural dynamics? How would the situation change if we recorded more neurons? When, if at all, can we trust dynamical portraits obtained from measuring an infinitesimal fraction of task relevant neurons? We present a theory that answers these questions, and test it using physiological recordings from reaching monkeys. This theory reveals conceptual insights into how task complexity governs both neural dimensionality and accurate recovery of dynamic portraits, thereby providing quantitative guidelines for future large-scale experimental design.


Sign in / Sign up

Export Citation Format

Share Document