scholarly journals The periodic axon membrane skeleton leads to high-density sodium nanodomains but does not impact action potentials

2021 ◽  
Author(s):  
Zhaojie Chai ◽  
Anastasios V. Tzingonunis ◽  
George Lykotrafitis

ABSTRACTRecent work has established that axons have a periodic skeleton structure comprising of azimuthal actin rings connected via longitudinal spectrin tetramer filaments. This structure endows the axon with structural integrity and mechanical stability. Additionally, voltage-gated sodium channels follow the periodicity of the active-spectrin arrangement, spaced ∼190 nm segments apart. The impact of this periodic sodium channel arrangement on the generation and propagation of action potentials is unknown. To address this question, we simulated an action potential using the Hodgkin-Huxley formalism in a cylindrical compartment but instead of using a homogeneous distribution of voltage-gated sodium channels in the membrane, we applied the experimentally determined periodic arrangement. We found that the periodic distribution of voltage-gated sodium channels does not significantly affect the generation or propagation of action potentials, but instead leads to high-density sodium channel nanodomains. This work provides a foundation for future studies investigating the role of the voltage-gated sodium channel periodic arrangement in the axon.

2018 ◽  
Vol 128 (6) ◽  
pp. 1151-1166 ◽  
Author(s):  
Marit Poffers ◽  
Nathalie Bühne ◽  
Christine Herzog ◽  
Anja Thorenz ◽  
Rongjun Chen ◽  
...  

Abstract Background Voltage-gated sodium channels generate action potentials in excitable cells, but they have also been attributed noncanonical roles in nonexcitable cells. We hypothesize that voltage-gated sodium channels play a functional role during extravasation of neutrophils. Methods Expression of voltage-gated sodium channels was analyzed by polymerase chain reaction. Distribution of Nav1.3 was determined by immunofluorescence and flow cytometry in mouse models of ischemic heart and kidney injury. Adhesion, transmigration, and chemotaxis of neutrophils to endothelial cells and collagen were investigated with voltage-gated sodium channel inhibitors and lidocaine in vitro. Sodium currents were examined with a whole cell patch clamp. Results Mouse and human neutrophils express multiple voltage-gated sodium channels. Only Nav1.3 was detected in neutrophils recruited to ischemic mouse heart (25 ± 7%, n = 14) and kidney (19 ± 2%, n = 6) in vivo. Endothelial adhesion of mouse neutrophils was reduced by tetrodotoxin (56 ± 9%, unselective Nav-inhibitor), ICA121431 (53 ± 10%), and Pterinotoxin-2 (55 ± 9%; preferential inhibitors of Nav1.3, n = 10). Tetrodotoxin (56 ± 19%), ICA121431 (62 ± 22%), and Pterinotoxin-2 (59 ± 22%) reduced transmigration of human neutrophils through endothelial cells, and also prevented chemotactic migration (n = 60, 3 × 20 cells). Lidocaine reduced neutrophil adhesion to 60 ± 9% (n = 10) and transmigration to 54 ± 8% (n = 9). The effect of lidocaine was not increased by ICA121431 or Pterinotoxin-2. Conclusions Nav1.3 is expressed in neutrophils in vivo; regulates attachment, transmigration, and chemotaxis in vitro; and may serve as a relevant target for antiinflammatory effects of lidocaine.


2016 ◽  
Vol 113 (7) ◽  
pp. 1823-1828 ◽  
Author(s):  
Carolina González ◽  
José Cánovas ◽  
Javiera Fresno ◽  
Eduardo Couve ◽  
Felipe A. Court ◽  
...  

The regulation of the axonal proteome is key to generate and maintain neural function. Fast and slow axoplasmic waves have been known for decades, but alternative mechanisms to control the abundance of axonal proteins based on local synthesis have also been identified. The presence of the endoplasmic reticulum has been documented in peripheral axons, but it is still unknown whether this localized organelle participates in the delivery of axonal membrane proteins. Voltage-gated sodium channels are responsible for action potentials and are mostly concentrated in the axon initial segment and nodes of Ranvier. Despite their fundamental role, little is known about the intracellular trafficking mechanisms that govern their availability in mature axons. Here we describe the secretory machinery in axons and its contribution to plasma membrane delivery of sodium channels. The distribution of axonal secretory components was evaluated in axons of the sciatic nerve and in spinal nerve axons after in vivo electroporation. Intracellular protein trafficking was pharmacologically blocked in vivo and in vitro. Axonal voltage-gated sodium channel mRNA and local trafficking were examined by RT-PCR and a retention-release methodology. We demonstrate that mature axons contain components of the endoplasmic reticulum and other biosynthetic organelles. Axonal organelles and sodium channel localization are sensitive to local blockade of the endoplasmic reticulum to Golgi transport. More importantly, secretory organelles are capable of delivering sodium channels to the plasma membrane in isolated axons, demonstrating an intrinsic capacity of the axonal biosynthetic route in regulating the axonal proteome in mammalian axons.


2014 ◽  
Vol 144 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Tamer M. Gamal El-Din ◽  
Todd Scheuer ◽  
William A. Catterall

Voltage-gated sodium channels mediate the initiation and propagation of action potentials in excitable cells. Transmembrane segment S4 of voltage-gated sodium channels resides in a gating pore where it senses the membrane potential and controls channel gating. Substitution of individual S4 arginine gating charges (R1–R3) with smaller amino acids allows ionic currents to flow through the mutant gating pore, and these gating pore currents are pathogenic in some skeletal muscle periodic paralysis syndromes. The voltage dependence of gating pore currents provides information about the transmembrane position of the gating charges as S4 moves in response to membrane potential. Here we studied gating pore current in mutants of the homotetrameric bacterial sodium channel NaChBac in which individual arginine gating charges were replaced by cysteine. Gating pore current was observed for each mutant channel, but with different voltage-dependent properties. Mutating the first (R1C) or second (R2C) arginine to cysteine resulted in gating pore current at hyperpolarized membrane potentials, where the channels are in resting states, but not at depolarized potentials, where the channels are activated. Conversely, the R3C gating pore is closed at hyperpolarized membrane potentials and opens with channel activation. Negative conditioning pulses revealed time-dependent deactivation of the R3C gating pore at the most hyperpolarized potentials. Our results show sequential voltage dependence of activation of gating pore current from R1 to R3 and support stepwise outward movement of the substituted cysteines through the narrow portion of the gating pore that is sealed by the arginine side chains in the wild-type channel. This pattern of voltage dependence of gating pore current is consistent with a sliding movement of the S4 helix through the gating pore. Through comparison with high-resolution models of the voltage sensor of bacterial sodium channels, these results shed light on the structural basis for pathogenic gating pore currents in periodic paralysis syndromes.


2020 ◽  
Author(s):  
Daria Y. Romanova ◽  
Ivan V. Smirnov ◽  
Mikhail A. Nikitin ◽  
Andrea B. Kohn ◽  
Alisa I. Borman ◽  
...  

AbstractPlacozoa are small disc-shaped animals, representing the simplest known, possibly ancestral, organization of free-living animals. With only six morphological distinct cell types, without any recognized neurons or muscle, placozoans exhibit fast effector reactions and complex behaviors. However, little is known about electrogenic mechanisms in these animals. Here, we showed the presence of rapid action potentials in four species of placozoans (Trichoplax adhaerens [H1 haplotype], Trichoplax sp.[H2], Hoilungia hongkongensis [H13], and Hoilungia sp. [H4]). These action potentials are sodium-dependent and can be inducible. The molecular analysis suggests the presence of 5-7 different types of voltage-gated sodium channels, which showed substantial evolutionary radiation compared to many other metazoans. Such unexpected diversity of sodium channels in early-branched animal lineages reflect both duplication events and parallel evolution of unique behavioral integration in these nerveless animals.HighlightsPlacozoans are the simplest known animals without recognized neurons and musclesWith only six morphological cell types, placozoans showed complex & rapid behaviorsSodium-dependent action potentials have been discovered in intact animalsVoltage-gated sodium channels (Nav) in Placozoa support a rapid behavioral integrationPlacozoans have more Nav channels that any studied invertebrate animal so farDiversification of Nav-channels highlight the unique evolution of these nerveless animals


e-Neuroforum ◽  
2017 ◽  
Vol 23 (3) ◽  
Author(s):  
Carla Nau ◽  
Enrico Leipold

AbstractPainful stimuli are detected by specialized neurons, nociceptors, and are translated into action potentials, that are conducted along afferent pathways into the central nervous system, where they are conceived as pain. Voltage-gated sodium channels (Na


2021 ◽  
pp. 1-9
Author(s):  
Hisham Al-Ward ◽  
Chun-Yang Liu ◽  
Ning Liu ◽  
Fahmi Shaher ◽  
Murad Al-Nusaif ◽  
...  

<b><i>Background:</i></b> Voltage-gated sodium channels are protein complexes composed of 2 subunits, namely, pore-forming α- and regulatory β-subunits. A β-subunit consists of 5 proteins encoded by 4 genes (i.e., <i>SCN1B–SCN4B</i>). <b><i>Summary:</i></b> β<sub>1</sub>-Subunits regulate sodium ion channel functions, including gating properties, subcellular localization, and kinetics. <b><i>Key Message:</i></b> Sodium channel β<sub>1</sub>- and its variant β<sub>1B</sub>-subunits are encoded by <i>SCN1B</i>. These variants are associated with many human diseases, such as epilepsy, Brugada syndrome, Dravet syndrome, and cancers. On the basis of previous research, we aimed to provide an overview of the structure, expression, and involvement of <i>SCN1B</i> in physiological processes and focused on its role in diseases.


2017 ◽  
Author(s):  
Kenneth R. Tovar ◽  
Daniel C. Bridges ◽  
Bian Wu ◽  
Connor Randall ◽  
Morgane Audouard ◽  
...  

AbstractThe small caliber of central nervous system (CNS) axons makes routine study of axonal physiology relatively difficult. However, while recording extracellular action potentials from neurons cultured on planer multi-electrode arrays (MEAs) we found activity among groups of electrodes consistent with action potential propagation in single neurons. Action potential propagation was evident as widespread, repetitive cooccurrence of extracellular action potentials (eAPs) among groups of electrodes. These eAPs occurred with invariant sequences and inter-electrode latencies that were consistent with reported measures of action potential propagation in unmyelinated axons. Within co-active electrode groups, the inter-electrode eAP latencies were temperature sensitive, as expected for action potential propagation. Our data are consistent with these signals primarily reflecting axonal action potential propagation, from axons with a high density of voltage-gated sodium channels. Repeated codetection of eAPs by multiple electrodes confirmed these eAPs are from individual neurons and averaging these eAPs revealed sub-threshold events at other electrodes. The sequence of electrodes at which eAPs co-occur uniquely identifies these neurons, allowing us to monitor spiking of single identified neurons within neuronal ensembles. We recorded dynamic changes in single axon physiology such as simultaneous increases and decreases in excitability in different portions of single axonal arbors over several hours. Over several weeks, we measured changes in inter-electrode propagation latencies and ongoing changes in excitability in different regions of single axonal arbors. We recorded action potential propagation signals in human induced pluripotent stem cell-derived neurons which could thus be used to study axonal physiology in human disease models.Significance StatementStudying the physiology of central nervous system axons is limited by the technical challenges of recording from axons with pairs of patch or extracellular electrodes at two places along single axons. We studied action potential propagation in single axonal arbors with extracellular recording with multi-electrode arrays. These recordings were non-invasive and were done from several sites of small caliber axons and branches. Unlike conventional extracellular recording, we unambiguously identified and labelled the neuronal source of propagating action potentials. We manipulated and quantified action potential propagation and found a surprisingly high density of axonal voltage-gated sodium channels. Our experiments also demonstrate that the excitability of different portions of axonal arbors can be independently regulated on time scales from hours to weeks.


Sign in / Sign up

Export Citation Format

Share Document