scholarly journals Influenza virus ribonucleoprotein complex formation occurs in the nucleolus

2021 ◽  
Author(s):  
Sho Miyamoto ◽  
Masahiro Nakano ◽  
Takeshi Morikawa ◽  
Ai Hirabayashi ◽  
Ryoma Tamura ◽  
...  

AbstractInfluenza A virus double-helical ribonucleoprotein complex (vRNP) performs transcription and replication of viral genomic RNA (vRNA). Unlike most RNA viruses, vRNP formation accompanied by vRNA replication is carried out in the nucleus of virus-infected cell. However, the precise subnuclear site remains unknown. Here, we report the subnuclear site of vRNP formation in influenza virus. We found that all vRNP components were colocalized in the nucleolus of virus-infected cells at early stage of infection. Mutational analysis showed that nucleolar localization of viral nucleoprotein, a major vRNP component, is critical for functional double-helical vRNP formation. Furthermore, nucleolar disruption of virus-infected cells inhibited vRNP component assembly into double-helical vRNPs, resulting in decreased vRNA transcription and replication. Collectively, our findings demonstrate that the vRNA replication-coupled vRNP formation occurs in the nucleolus, demonstrating the importance of the nucleolus for influenza virus life cycle.

mBio ◽  
2022 ◽  
Author(s):  
Sho Miyamoto ◽  
Masahiro Nakano ◽  
Takeshi Morikawa ◽  
Ai Hirabayashi ◽  
Ryoma Tamura ◽  
...  

Influenza A virus ribonucleoprotein complex (RNP) is responsible for viral genome replication, thus playing essential roles in the virus life cycle. RNP formation occurs in the nuclei of infected cells; however, little is known about the nuclear domains involved in this process.


2014 ◽  
Vol 89 (2) ◽  
pp. 1452-1455 ◽  
Author(s):  
Lauren Turrell ◽  
Edward C. Hutchinson ◽  
Frank T. Vreede ◽  
Ervin Fodor

In the influenza virus ribonucleoprotein complex, the oligomerization of the nucleoprotein is mediated by an interaction between the tail-loop of one molecule and the groove of the neighboring molecule. In this study, we show that phosphorylation of a serine residue (S165) within the groove of influenza A virus nucleoprotein inhibits oligomerization and, consequently, ribonucleoprotein activity and viral growth. We propose that nucleoprotein oligomerization in infected cells is regulated by reversible phosphorylation.


2016 ◽  
Vol 90 (7) ◽  
pp. 3661-3675 ◽  
Author(s):  
Sathya N. Thulasi Raman ◽  
Guanqun Liu ◽  
Hyun Mi Pyo ◽  
Ya Cheng Cui ◽  
Fang Xu ◽  
...  

ABSTRACTDDX3 belongs to the DEAD box RNA helicase family and is a multifunctional protein affecting the life cycle of a variety of viruses. However, its role in influenza virus infection is unknown. In this study, we explored the potential role of DDX3 in influenza virus life cycle and discovered that DDX3 is an antiviral protein. Since many host proteins affect virus life cycle by interacting with certain components of the viral machinery, we first verified whether DDX3 has any viral interaction partners. Immunoprecipitation studies revealed NS1 and NP as direct interaction partners of DDX3. Stress granules (SGs) are known to be antiviral and do form in influenza virus-infected cells expressing defective NS1 protein. Additionally, a recent study showed that DDX3 is an important SG-nucleating factor. We thus explored whether DDX3 plays a role in influenza virus infection through regulation of SGs. Our results showed that SGs were formed in infected cells upon infection with a mutant influenza virus lacking functional NS1 (del NS1) protein, and DDX3 colocalized with NP in SGs. We further determined that the DDX3 helicase domain did not interact with NS1 and NP; however, it was essential for DDX3 localization in virus-induced SGs. Knockdown of DDX3 resulted in impaired SG formation and led to increased virus titers. Taken together, our results identified DDX3 as an antiviral protein with a role in virus-induced SG formation.IMPORTANCEDDX3 is a multifunctional RNA helicase and has been reported to be involved in regulating various virus life cycles. However, its function during influenza A virus infection remains unknown. In this study, we demonstrated that DDX3 is capable of interacting with influenza virus NS1 and NP proteins; DDX3 and NP colocalize in the del NS1 virus-induced SGs. Furthermore, knockdown of DDX3 impaired SG formation and led to a decreased virus titer. Thus, we provided evidence that DDX3 is an antiviral protein during influenza virus infection and its antiviral activity is through regulation of SG formation. Our findings provide knowledge about the function of DDX3 in the influenza virus life cycle and information for future work on manipulating the SG pathway and its components to fight influenza virus infection.


2015 ◽  
Vol 89 (11) ◽  
pp. 5822-5834 ◽  
Author(s):  
Weinan Zheng ◽  
Jing Li ◽  
Shanshan Wang ◽  
Shuaishuai Cao ◽  
Jingwen Jiang ◽  
...  

ABSTRACTThe nucleoprotein (NP) is a major component of the viral ribonucleoprotein (vRNP) complex. During the replication of influenza virus, the vRNP complex undergoes nuclear-cytoplasmic shuttling, during which NP serves as one of the determinants. To date, many phosphorylation sites on NP have been identified, but the biological functions of many of these phosphorylation sites remain unknown. In the present study, the functions of the phosphorylation sites S9, Y10, and Y296 were characterized. These residues are highly conserved, and their phosphorylation was essential for virus growth in cell culture and in a mouse model by regulating the activity of the viral polymerase and the nuclear-cytoplasmic shuttling of NP. The phosphorylation and dephosphorylation of S9 and Y10 controlled nuclear import of NP by affecting the binding affinity between NP and different isoforms of importin-α. In addition, the phosphorylation of Y296 caused nuclear retention of NP by reducing the interaction between NP and CRM1. Furthermore, tyrosine phosphorylation of NP during the early stage of virus infection was ablated when Y296 was mutated to F. However, at later stages of infection, it was weakened by the Y10F mutation. Taken together, the present data indicate that the phosphorylation and dephosphorylation of NP control the shuttling of NP between the nucleus and the cytoplasm during virus replication.IMPORTANCEIt is well known that phosphorylation regulates the functions of viral proteins and the life cycle of influenza A virus. As NP is the most abundant protein in the vRNP complex of influenza A virus, several phosphorylation sites on this protein have been identified. However, the functions of these phosphorylation sites were unknown. The present study demonstrates that the phosphorylation status of these sites on NP can mediate its nuclear-cytoplasmic shuttling, which drives the trafficking of vRNP complexes in infected cells. The present data suggest that the phosphorylated residues of NP are multistep controllers of the virus life cycle and new targets for the design of anti-influenza drugs.


2001 ◽  
Vol 75 (17) ◽  
pp. 8127-8136 ◽  
Author(s):  
Daniel R. Perez ◽  
Ruben O. Donis

ABSTRACT Influenza A virus expresses three viral polymerase (P) subunits—PB1, PB2, and PA—all of which are essential for RNA and viral replication. The functions of P proteins in transcription and replication have been partially elucidated, yet some of these functions seem to be dependent on the formation of a heterotrimer for optimal viral RNA transcription and replication. Although it is conceivable that heterotrimer subunit interactions may allow a more efficient catalysis, direct evidence of their essentiality for viral replication is lacking. Biochemical studies addressing the molecular anatomy of the P complexes have revealed direct interactions between PB1 and PB2 as well as between PB1 and PA. Previous studies have shown that the N-terminal 48 amino acids of PB1, termed domain α, contain the residues required for binding PA. We report here the refined mapping of the amino acid sequences within this small region of PB1 that are indispensable for binding PA by deletion mutagenesis of PB1 in a two-hybrid assay. Subsequently, we used site-directed mutagenesis to identify the critical amino acid residues of PB1 for interaction with PA in vivo. The first 12 amino acids of PB1 were found to constitute the core of the interaction interface, thus narrowing the previous boundaries of domain α. The role of the minimal PB1 domain α in influenza virus gene expression and genome replication was subsequently analyzed by evaluating the activity of a set of PB1 mutants in a model reporter minigenome system. A strong correlation was observed between a functional PA binding site on PB1 and P activity. Influenza viruses bearing mutant PB1 genes were recovered using a plasmid-based influenza virus reverse genetics system. Interestingly, mutations that rendered PB1 unable to bind PA were either nonviable or severely growth impaired. These data are consistent with an essential role for the N terminus of PB1 in binding PA, P activity, and virus growth.


2021 ◽  
Vol 10 (36) ◽  
pp. 167-169
Author(s):  
Camila Siqueira ◽  
Diogo Kuczera ◽  
Eneida Da Lozzo ◽  
Dorly Buchi ◽  
José Nelson Couceiro ◽  
...  

Introduction: Strains of macrophages, such as murine J774.G8 macrophages, are susceptible to influenza A infection [1]. One of the responses to viral infection involves the production of various types of immunostimulatory cytokines by infected cells [2]. Methods: In the present study, the macrophage strain J774.G8, maintained in RPMI medium, was submitted to treatment with 10% V/V of two different biotherapics prepared from influenza H3N2, both at 30x. Additionally, two control groups were analyzed: macrophages stimulated with water 30x and macrophages without any treatment. Biotherapics were prepared from intact H3N2 influenza virus and H3N2 inactivated by alcohol 70%. The compounding of both biotherapics followed this procedure: one part of viral particles was diluted in 9 parts of sterile distilled water. The 1:10 sample was submitted to 100 mechanical succussions using Autic® Brazilian machine, originating the first dilution, named decimal (1x). 1 ml of this solution was diluted in 9 ml of solvent and was submitted to 100 succussions, generating biotherapic 2x. This procedure was successively repeated, according to Brazilian Homeopathic Pharmacopoeia, to obtain the biotherapic 30x. By the same technique, water vehicle was prepared in the potency of 30x to be used as control. All samples were prepared under sterile and aseptic conditions, using laminar flow cabinet, class II, and were stored in the refrigerator (8ºC), to avoid microbiological contamination. J774.G8 macrophages were stimulated for 2 days, in a total of six stimuli. Immediately before infection with 25 µl of H3N2 influenza virus, the supernatants were collected and frozen at -20 ºC for later analysis. Next, 24 hours after the virus infection, the supernatants were aliquoted and frozen under the same conditions. Three independent experiments were done in triplicate. Analysis of supernatants was performed by flow cytometry using the Mouse Inflammation Kit. The cytokines detected in this experiment were IL-10, IL 12, TNF-α and MCP1. Results: In all cases, there were no significant differences compared to control groups. However, the production of TNF-α detected in macrophages treated by intact and inactivated biotherapics presented a tendency to increase after infection. In fact, similar results were previously detected in other experiments conducted only with the intact biotherapic [3]. The release of the cytokine MCP1 in all experimental situations presented a tendency to decrease after the viral infection when compared to untreated macrophages. No statistically significant difference was detected in the production of IL 12 and IL 10. These experiments will be repeated to confirm the data obtained.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Tomohiko Urushisaki ◽  
Tomoaki Takemura ◽  
Shigemi Tazawa ◽  
Mayuko Fukuoka ◽  
Junji Hosokawa-Muto ◽  
...  

Influenza A viral infections reached pandemic levels in 1918, 1957, 1968, and, most recently, in 2009 with the emergence of the swine-origin H1N1 influenza virus. The development of novel therapeutics or prophylactics for influenza virus infection is urgently needed. We examined the evaluation of the anti-influenza virus (A/WSN/33 (H1N1)) activity of Brazilian green propolis water extract (PWE) and its constituents by cell viability and real-time PCR assays. Our findings showed strong evidence that PWE has an anti-influenza effect and demonstrate that caffeoylquinic acids are the active anti-influenza components of PWE. Furthermore, we have found that the amount of viral RNA per cell remained unchanged even in the presence of PWE, suggesting that PWE has no direct impact on the influenza virus but may have a cytoprotective activity by affecting internal cellular process. These findings indicate that caffeoylquinic acids are the active anti-influenza components of PWE. Above findings might facilitate the prophylactic application of natural products and the realization of novel anti-influenza drugs based on caffeoylquinic acids, as well as further the understanding of cytoprotective intracellular mechanisms in influenza virus-infected cells.


2010 ◽  
Vol 84 (6) ◽  
pp. 3068-3078 ◽  
Author(s):  
Mayo Ueda ◽  
Tomo Daidoji ◽  
Anariwa Du ◽  
Cheng-Song Yang ◽  
Madiha S. Ibrahim ◽  
...  

ABSTRACT In this study, we show that the highly pathogenic H5N1 avian influenza virus (AIV) (A/crow/Kyoto/53/04 and A/chicken/Egypt/CL6/07) induced apoptosis in duck embryonic fibroblasts (DEF). In contrast, apoptosis was reduced among cells infected with low-pathogenic AIVs (A/duck/HK/342/78 [H5N2], A/duck/HK/820/80 [H5N3], A/wigeon/Osaka/1/01 [H7N7], and A/turkey/Wisconsin/1/66 [H9N2]). Thus, we investigated the molecular mechanisms of apoptosis induced by H5N1-AIV infection. Caspase-dependent and -independent pathways contributed to the cytopathic effects. We further showed that, in the induction of apoptosis, the hemagglutinin of H5N1-AIV played a major role and its cleavage sequence was not critical. We also observed outer membrane permeabilization and loss of the transmembrane potential of the mitochondria of infected DEF, indicating that mitochondrial dysfunction was caused by the H5N1-AIV infection. We then analyzed Ca2+ dynamics in the infected cells and demonstrated an increase in the concentration of Ca2+ in the cytosol ([Ca2+]i) and mitochondria ([Ca2+]m) after H5N1-AIV infection. Regardless, gene expression important for regulating Ca2+ efflux from the endoplasmic reticulum did not significantly change after H5N1-AIV infection. These results suggest that extracellular Ca2+ may enter H5N1-AIV-infected cells. Indeed, EGTA, which chelates extracellular free Ca2+, significantly reduced the [Ca2+]i, [Ca2+]m, and apoptosis induced by H5N1-AIV infection. In conclusion, we identified a novel mechanism for influenza A virus-mediated cell death, which involved the acceleration of extracellular Ca2+ influx, leading to mitochondrial dysfunction and apoptosis. These findings may be useful for understanding the pathogenesis of H5N1-AIV in avian species as well as the impact of Ca2+ homeostasis on influenza A virus infection.


2012 ◽  
Vol 93 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Nicole C. Robb ◽  
Ervin Fodor

The influenza A virus M1 mRNA is alternatively spliced to produce M2 mRNA, mRNA3, and in some cases, M4 mRNA. Splicing of influenza mRNAs is carried out by the cellular splicing machinery and is thought to be regulated, as both spliced and unspliced mRNAs encode proteins. In this study, we used radioactively labelled primers to investigate the accumulation of spliced and unspliced M segment mRNAs in viral infection and ribonucleoprotein (RNP) reconstitution assays in which only the minimal components required for transcription and replication to occur were expressed. We found that co-expression of the viral NS1 protein in an RNP reconstitution assay altered the accumulation of spliced mRNAs compared with when it was absent, and that this activity was dependent on the RNA-binding ability of NS1. These findings suggest that the NS1 protein plays a role in the regulation of splicing of influenza virus M1 mRNA.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1721
Author(s):  
Marta De Angelis ◽  
David Della-Morte ◽  
Gabriele Buttinelli ◽  
Angela Di Martino ◽  
Francesca Pacifici ◽  
...  

Polyphenols have been widely studied for their antiviral effect against respiratory virus infections. Among these, resveratrol (RV) has been demonstrated to inhibit influenza virus replication and more recently, it has been tested together with pterostilbene against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present work, we evaluated the antiviral activity of polydatin, an RV precursor, and a mixture of polyphenols and other micronutrients, named A5+, against influenza virus and SARS-CoV-2 infections. To this end, we infected Vero E6 cells and analyzed the replication of both respiratory viruses in terms of viral proteins synthesis and viral titration. We demonstrated that A5+ showed a higher efficacy in inhibiting both influenza virus and SARS-CoV-2 infections compared to polydatin treatment alone. Indeed, post infection treatment significantly decreased viral proteins expression and viral release, probably by interfering with any step of virus replicative cycle. Intriguingly, A5+ treatment strongly reduced IL-6 cytokine production in influenza virus-infected cells, suggesting its potential anti-inflammatory properties during the infection. Overall, these results demonstrate the synergic and innovative antiviral efficacy of A5+ mixture, although further studies are needed to clarify the mechanisms underlying its inhibitory effect.


Sign in / Sign up

Export Citation Format

Share Document