scholarly journals Parallel evolution of a splicing program controlling neuronal excitability in flies and mammals

2021 ◽  
Author(s):  
Antonio Torres-Méndez ◽  
Sinziana Pop ◽  
Sophie Bonnal ◽  
Isabel Almudi ◽  
Alida Avola ◽  
...  

SummaryNeurons draw on alternative splicing for their increased transcriptomic complexity throughout animal phylogeny. To delve into the mechanisms controlling the assembly and evolution of this regulatory layer, we characterized the neuronal microexon program in Drosophila and compared it with that of mammals. We found that in Drosophila, this splicing program is restricted to neurons by the post-transcriptional processing of the enhancer of microexons (eMIC) domain in Srrm234 by Elav and Fne. eMIC deficiency or misexpression leads to widespread neurological alterations largely emerging from impaired neuronal activity, as revealed by a combination of neuronal imaging experiments and cell-type-specific rescues. These defects are associated with the genome-wide skipping of short neural exons, which are strongly enriched in ion channels. Remarkably, we found no overlap of eMIC-regulated exons between flies and mice, illustrating how ancient post-transcriptional programs can evolve independently in different phyla to impact distinct cellular modules while maintaining cell-type specificity.

2019 ◽  
Author(s):  
K.A.B. Gawronski ◽  
W. Bone ◽  
Y. Park ◽  
E. Pashos ◽  
X. Wang ◽  
...  

AbstractBackgroundGenome-wide association studies have identified 150+ loci associated with lipid levels. However, the genetic mechanisms underlying most of these loci are not well-understood. Recent work indicates that changes in the abundance of alternatively spliced transcripts contributes to complex trait variation. Consequently, identifying genetic loci that associate with alternative splicing in disease-relevant cell types and determining the degree to which these loci are informative for lipid biology is of broad interest.Methods and ResultsWe analyze gene splicing in 83 sample-matched induced pluripotent stem cell (iPSC) and hepatocyte-like cell (HLC) lines (n=166), as well as in an independent collection of primary liver tissues (n=96). We observe that transcript splicing is highly cell-type specific, and the genes that are differentially spliced between iPSCs and HLCs are enriched for metabolism pathway annotations. We identify 1,381 HLC splicing quantitative trait loci (sQTLs) and 1,462 iPSC sQTLs and find that sQTLs are often shared across cell types. To evaluate the contribution of sQTLs to variation in lipid levels, we conduct colocalization analysis using lipid genome-wide association data. We identify 19 lipid-associated loci that colocalize either with an HLC expression quantitative trait locus (eQTL) or sQTL. Only one locus colocalizes with both an sQTL and eQTL, indicating that sQTLs contribute information about GWAS loci that cannot be obtained by analysis of steady-state gene expression alone.ConclusionsThese results provide an important foundation for future efforts that use iPSC and iPSC-derived cells to evaluate genetic mechanisms influencing both cardiovascular disease risk and complex traits in general.


2020 ◽  
Vol 117 (18) ◽  
pp. 10003-10014 ◽  
Author(s):  
Alexander J. Cammack ◽  
Arnav Moudgil ◽  
Jiayang Chen ◽  
Michael J. Vasek ◽  
Mark Shabsovich ◽  
...  

Transcription factors (TFs) enact precise regulation of gene expression through site-specific, genome-wide binding. Common methods for TF-occupancy profiling, such as chromatin immunoprecipitation, are limited by requirement of TF-specific antibodies and provide only end-point snapshots of TF binding. Alternatively, TF-tagging techniques, in which a TF is fused to a DNA-modifying enzyme that marks TF-binding events across the genome as they occur, do not require TF-specific antibodies and offer the potential for unique applications, such as recording of TF occupancy over time and cell type specificity through conditional expression of the TF–enzyme fusion. Here, we create a viral toolkit for one such method, calling cards, and demonstrate that these reagents can be delivered to the live mouse brain and used to report TF occupancy. Further, we establish a Cre-dependent calling cards system and, in proof-of-principle experiments, show utility in defining cell type-specific TF profiles and recording and integrating TF-binding events across time. This versatile approach will enable unique studies of TF-mediated gene regulation in live animal models.


2019 ◽  
Author(s):  
Anisha P. Adke ◽  
Aleisha Khan ◽  
Hye-Sook Ahn ◽  
Jordan J. Becker ◽  
Torri D. Wilson ◽  
...  

ABSTRACTCentral amygdala (CeA) neurons expressing protein kinase C delta (PKCδ+) or Somatostatin (Som+) differentially modulate diverse behaviors. The underlying features supporting cell-type-specific function in the CeA, however, remain unknown. Using whole-cell patch-clamp electrophysiology in acute mouse brain slices and biocytin-based neuronal reconstructions, we demonstrate that neuronal morphology and relative excitability are two distinguishing features between Som+ and PKCδ+ CeLC neurons. Som+ neurons, for example, are more excitable, compact and with more complex dendritic arborizations than PKCδ+ neurons. Cell size, intrinsic membrane properties, and anatomical localization were further shown to correlate with cell-type-specific differences in excitability. Lastly, in the context of neuropathic pain, we show a shift in the excitability equilibrium between PKCδ+ and Som+ neurons, suggesting that imbalances in the relative output of these cells underlie maladaptive changes in behaviors. Together, our results identify fundamentally important distinguishing features of PKCδ+ and Som+ cells that support cell-type-specific function in the CeA.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sinisa Hrvatin ◽  
Christopher P Tzeng ◽  
M Aurel Nagy ◽  
Hume Stroud ◽  
Charalampia Koutsioumpa ◽  
...  

Enhancers are the primary DNA regulatory elements that confer cell type specificity of gene expression. Recent studies characterizing individual enhancers have revealed their potential to direct heterologous gene expression in a highly cell-type-specific manner. However, it has not yet been possible to systematically identify and test the function of enhancers for each of the many cell types in an organism. We have developed PESCA, a scalable and generalizable method that leverages ATAC- and single-cell RNA-sequencing protocols, to characterize cell-type-specific enhancers that should enable genetic access and perturbation of gene function across mammalian cell types. Focusing on the highly heterogeneous mammalian cerebral cortex, we apply PESCA to find enhancers and generate viral reagents capable of accessing and manipulating a subset of somatostatin-expressing cortical interneurons with high specificity. This study demonstrates the utility of this platform for developing new cell-type-specific viral reagents, with significant implications for both basic and translational research.


2015 ◽  
Author(s):  
Hilary Kiyo Finucane ◽  
Brendan Bulik-Sullivan ◽  
Alexander Gusev ◽  
Gosia Trynka ◽  
Yakir Reshef ◽  
...  

Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here, we analyze a broad set of functional elements, including cell-type-specific elements, to estimate their polygenic contributions to heritability in genome-wide association studies (GWAS) of 17 complex diseases and traits spanning a total of 1.3 million phenotype measurements. To enable this analysis, we introduce a new method for partitioning heritability from GWAS summary statistics while controlling for linked markers. This new method is computationally tractable at very large sample sizes, and leverages genome-wide information. Our results include a large enrichment of heritability in conserved regions across many traits; a very large immunological disease-specific enrichment of heritability in FANTOM5 enhancers; and many cell-type-specific enrichments including significant enrichment of central nervous system cell types in body mass index, age at menarche, educational attainment, and smoking behavior. These results demonstrate that GWAS can aid in understanding the biological basis of disease and provide direction for functional follow-up.


2021 ◽  
Author(s):  
Elior Rahmani ◽  
Brandon Jew ◽  
Regev Schweiger ◽  
Brooke Rhead ◽  
Lindsey A. Criswell ◽  
...  

AbstractWe benchmarked two approaches for the detection of cell-type-specific differential DNA methylation: Tensor Composition Analysis (TCA) and a regression model with interaction terms (CellDMC). Our experiments alongside rigorous mathematical explanations show that TCA is superior over CellDMC, thus resolving recent criticisms suggested by Jing et al. Following misconceptions by Jing and colleagues with modelling cell-type-specificity and the application of TCA, we further discuss best practices for performing association studies at cell-type resolution. The scripts for reproducing all of our results and figures are publicly available at github.com/cozygene/CellTypeSpecificMethylationAnalysis.


eNeuro ◽  
2020 ◽  
pp. ENEURO.0402-20.2020
Author(s):  
Anisha P. Adke ◽  
Aleisha Khan ◽  
Hye-Sook Ahn ◽  
Jordan J. Becker ◽  
Torri D. Wilson ◽  
...  

2019 ◽  
Author(s):  
Hyeon-Jin Kim ◽  
Galip Gürkan Yardımcı ◽  
Giancarlo Bonora ◽  
Vijay Ramani ◽  
Jie Liu ◽  
...  

AbstractSingle-cell Hi-C (scHi-C) interrogates genome-wide chromatin interaction in individual cells, allowing us to gain insights into 3D genome organization. However, the extremely sparse nature of scHi-C data poses a significant barrier to analysis, limiting our ability to tease out hidden biological information. In this work, we approach this problem by applying topic modeling to scHi-C data. Topic modeling is well-suited for discovering latent topics in a collection of discrete data. For our analysis, we generate twelve different single-cell combinatorial indexed Hi-C (sciHi-C) libraries from five human cell lines (GM12878, H1Esc, HFF, IMR90, and HAP1), consisting over 25,000 cells. We demonstrate that topic modeling is able to successfully capture cell type differences from sciHi-C data in the form of “chromatin topics.” We further show enrichment of particular compartment structures associated with locus pairs in these topics.


Neurogenesis ◽  
2015 ◽  
Vol 2 (1) ◽  
pp. e1122699 ◽  
Author(s):  
Joshua Shing Shun Li ◽  
Grace Ji-eun Shin ◽  
S Sean Millard

Sign in / Sign up

Export Citation Format

Share Document