scholarly journals TRPV1 in arteries enables a rapid myogenic tone

2021 ◽  
Author(s):  
Thieu X Phan ◽  
Hoai T Ton ◽  
Hajnalka Gulyas ◽  
Robert Porszasz ◽  
Attila Toth ◽  
...  

Arterioles maintain blow flow by adjusting their diameter in response to changes in local blood pressure. In this process called the myogenic response, a vascular smooth muscle mechanosensor controls tone predominantly through altering the membrane potential. In general, myogenic responses occur slowly, reaching a plateau in minutes. In the heart and skeletal muscle, however, myogenic tone is rapid; activation occurs in tens of seconds and arterial constrictions or raised extravascular pressure as brief as 100 ms remove tone. Previously, we identified extensive expression of TRPV1 in the smooth muscle of arterioles supplying skeletal muscle, heart and the adipose. Here, we reveal a critical role for TRPV1 in the myogenic tone of these tissues. TRPV1 antagonists dilated skeletal muscle arterioles in vitro and in vivo , increased coronary flow in isolated hearts, and transiently decreased blood pressure. All of these effects of TRPV1 antagonists were abolished by genetic disruption of TRPV1. Stretch of isolated vascular smooth muscle cells, or raised intravascular pressure in arteries (with or without endothelium), triggered Ca2+ signaling and vasoconstriction. The majority of these stretch-responses were TRPV1-mediated, with the remaining tone being inhibited by the TRPM4 antagonist, 9-phenantrol. Notably, tone developed more quickly in arteries from wild-type compared with TRPV1-null mice. Furthermore, the rapid vasodilation following brief constriction of arterioles was also dependent on TRPV1, consistent with a rapid deactivation or inactivation of TRPV1. Pharmacologic experiments revealed that membrane stretch activates a phospholipase C/protein kinase C signaling pathway to activate TRPV1, and in turn, L-type Ca2+ channels. These results suggest a critical role, for TRPV1 in the dynamic regulation of myogenic tone and blood flow in the heart and skeletal muscle.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Fisher ◽  
J J Reho ◽  
M Meddeb ◽  
J Ursitti ◽  
M Htet

Abstract Background Despite the many drugs for treatment of hypertension, it remains inadequately treated in >50% of patients and the number one contributor to cardiovascular mortality world-wide. Thus new targets and treatment strategies are badly needed. Myosin Phosphatase (MP) is a viable target: it is the primary effector of vascular smooth muscle relaxation and a critical mediator of signaling pathways regulating vessel tone. Purpose We are using complementary/ translatable approaches to test the hypothesis: editing of the Myosin Phosphatase Regulatory (Targeting) subunit (MYPT1), by shifting the expression of naturally occurring isoforms, will sensitize vascular smooth muscle to NO/cGMP/ROS mediated vasorelaxation and thereby lower BP in models of hypertension. A further goal is to determine mechanisms by which these signals activate MP thereby causing vasorelaxation. Methods LoxP sites were inserted in introns flanking alternative Exon24 (E24) of Mypt1. Mice were crossed with smMHCCreER mice and treated with Tamoxifen for smooth muscle specific deletion of E24 (SMcKO E24).Skipping E24 codes for a Mypt1 isoform that contains a C-terminal leucine zipper (LZ) motif required for cGMP-dependent protein kinase (cGK1) binding and NO/cGMP/ROS activation of MP. Second, we developed and tested guide RNAs for the purpose of AAV-CRISPR/CAS9 editing of Mypt1 E24 as a treatment for hypertension. Effect of editing is tested in otherwise normal mice and in the AngII sub-pressor model of hypertension. Results SMcKO E24 mice had mean BP that was 15+3 mmHg lower than control (n=5; p<0.05). Mesenteric arteries from these mice were significantly more sensitive to DEA/NO mediated relaxation (EC50: 2.1+0.5 nM vs 18.2+5.6 mM; n=5–6, p<0.05). Experiments testing response to AngII infusion are in progress and will be presented at the meeting. Preliminary biochemical assays support a 2-pool model, in which NO/cGMP/ROS activates the LZ+ pool, while contractile agonists inhibit the LZ- pool of MP, in the control of BP/ blood flow. We have generated a number of AAV Crispr/Cas9 gRNAs and validated their efficacy of editing of Mypt1 E24 in vitro. Experiments are in progress to test their efficacy and effect on BP in vivo. Conclusion These studies support that editing of Mypt1 E24 could be a novel strategy for vasodilator sensitization and effective lowering of blood pressure in humans with hypertension, thereby having a substantial impact on CV mortality world-wide. Acknowledgement/Funding NIH


Author(s):  
Yujun Cai ◽  
Xue-Lin Wang ◽  
Jinny Lu ◽  
Xin Lin ◽  
Jonathan Dong ◽  
...  

Objective: Arterial restenosis is the pathological narrowing of arteries after endovascular procedures, and it is an adverse event that causes patients to experience recurrent occlusive symptoms. Following angioplasty, vascular smooth muscle cells (SMCs) change their phenotype, migrate, and proliferate, resulting in neointima formation, a hallmark of arterial restenosis. SIKs (salt-inducible kinases) are a subfamily of the AMP-activated protein kinase family that play a critical role in metabolic diseases including hepatic lipogenesis and glucose metabolism. Their role in vascular pathological remodeling, however, has not been explored. In this study, we aimed to understand the role and regulation of SIK3 in vascular SMC migration, proliferation, and neointima formation. Approach and Results: We observed that SIK3 expression was low in contractile aortic SMCs but high in proliferating SMCs. It was also highly induced by growth medium in vitro and in neointimal lesions in vivo. Inactivation of SIKs significantly attenuated vascular SMC proliferation and up-regulated p21 CIP1 and p27 KIP1 . SIK inhibition also suppressed SMC migration and modulated actin polymerization. Importantly, we found that inhibition of SIKs reduced neointima formation and vascular inflammation in a femoral artery wire injury model. In mechanistic studies, we demonstrated that inactivation of SIKs mainly suppressed SMC proliferation by down-regulating AKT (protein kinase B) and PKA (protein kinase A)-CREB (cAMP response element-binding protein) signaling. CRTC3 signaling likely contributed to SIK inactivation-mediated antiproliferative effects. Conclusions: These findings suggest that SIK3 may play a critical role in regulating SMC proliferation, migration, and arterial restenosis. This study provides insights into SIK inhibition as a potential therapeutic strategy for treating restenosis in patients with PAD.


2015 ◽  
Vol 309 (5) ◽  
pp. H1017-H1028 ◽  
Author(s):  
Hidemizu Kunimoto ◽  
Kyosuke Kazama ◽  
Mizuho Takai ◽  
Mayuko Oda ◽  
Muneyoshi Okada ◽  
...  

Blood chemerin concentration shows positive correlation not only with body mass index and serum triglyceride level but also with systolic blood pressure. While it seems likely that chemerin influences vascular smooth muscle cell (SMC) proliferation and migration, which are crucial to the development of hypertension, this remains to be clarified. In the present study, we investigated whether chemerin controls SMC proliferation and migration in vitro and also affects blood pressure in vivo. In vitro, chemerin significantly stimulated rat mesenteric arterial SMC proliferation and migration, as determined by a cell counting assay and Boyden chamber assay, respectively. The migratory effect of chemerin was confirmed in human aortic SMCs. Chemerin significantly increased ROS production in SMCs and phosphorylation of Akt (Ser473) and ERK, as measured by fluorescent staining and Western blot analysis, respectively. Various inhibitors (ROS inhibitor: N-acetyl-l-cysteine, phosphatidylinositol 3-kinase inhibitor: LY-294002, MAPKK inhibitor: PD-98059, NADPH oxidase inhibitor: gp91 ds-tat, and xanthine oxidase inhibitor: allopurinol) as well as chemokine-like receptor 1 small interfering RNA significantly inhibited chemerin-induced SMC proliferation and migration. Furthermore, chemerin-neutralizing antibody prevented carotid neointimal hyperplasia in the mouse ligation model. In vivo, chronic chemerin treatment (6 μg/kg, 6 wk) increased systolic blood pressure as well as phosphorylation of Akt and ERK in the mouse isolated aorta. In summary, we, for the first time, demonstrate that chemerin/chemokine-like receptor 1 stimulates SMC proliferation and migration via ROS-dependent phosphorylation of Akt/ERK, which may lead to vascular structural remodeling and an increase in systolic blood pressure.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Nahed El-Najjar ◽  
Rashmi P. Kulkarni ◽  
Nancy Nader ◽  
Rawad Hodeify ◽  
Khaled Machaca

Diabetes is a complex disease that is characterized with hyperglycemia, dyslipidemia, and insulin resistance. These pathologies are associated with significant cardiovascular implications that affect both the macro- and microvasculature. It is therefore important to understand the effects of various pathologies associated with diabetes on the vasculature. Here we directly test the effects of hyperglycemia on vascular smooth muscle (VSM) Ca2+signaling in an isolated in vitro system using the A7r5 rat aortic cell line as a model. We find that prolonged exposure of A7r5 cells to hyperglycemia (weeks) is associated with changes to Ca2+signaling, including most prominently an inhibition of the passive ER Ca2+leak and the sarcoplasmic reticulum Ca2+-ATPase (SERCA). To translate these findings to the in vivo condition, we used primary VSM cells from normal and diabetic subjects and find that only the inhibition of the ER Ca2+leaks replicates in cells from diabetic donors. These results show that prolonged hyperglycemia in isolation alters the Ca2+signaling machinery in VSM cells. However, these alterations are not readily translatable to the whole organism situation where alterations to the Ca2+signaling machinery are different.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


1994 ◽  
Vol 269 (11) ◽  
pp. 8504-8509
Author(s):  
K.A. Pritchard ◽  
M.K. O'Banion ◽  
J.M. Miano ◽  
N. Vlasic ◽  
U.G. Bhatia ◽  
...  

2005 ◽  
Vol 108 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Giovanna CASTOLDI ◽  
Serena REDAELLI ◽  
Willy M. M. van de GREEF ◽  
Cira R. T. di GIOIA ◽  
Giuseppe BUSCA ◽  
...  

Ang II (angiotensin II) has multiple effects on vascular smooth muscle cells through the modulation of different classes of genes. Using the mRNA differential-display method to investigate gene expression in rat aortic smooth muscle cells in culture in response to 3 h of Ang II stimulation, we observed that Ang II down-regulated the expression of a member of the family of transmembrane receptors for Wnt proteins that was identified as Fzd2 [Fzd (frizzled)-2 receptor]. Fzds are a class of highly conserved genes playing a fundamental role in the developmental processes. In vitro, time course experiments demonstrated that Ang II induced a significant increase (P<0.05) in Fzd2 expression after 30 min, whereas it caused a significant decrease (P<0.05) in Fzd2 expression at 3 h. A similar rapid up-regulation after Ang II stimulation for 30 min was evident for TGFβ1 (transforming growth factor β1; P<0.05). To investigate whether Ang II also modulated Fzd2 expression in vivo, exogenous Ang II was administered to Sprague–Dawley rats (200 ng·kg−1 of body weight·min−1; subcutaneously) for 1 and 4 weeks. Control rats received normal saline. After treatment, systolic blood pressure was significantly higher (P<0.01), whereas plasma renin activity was suppressed (P<0.01) in Ang II- compared with the saline-treated rats. Ang II administration for 1 week did not modify Fzd2 expression in aorta of Ang II-treated rats, whereas Ang II administration for 4 weeks increased Fzd2 mRNA expression (P<0.05) in the tunica media of the aorta, resulting in a positive immunostaining for fibronectin at this time point. In conclusion, our data demonstrate that Ang II modulates Fzd2 expression in aortic smooth muscle cells both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document