scholarly journals Collective behavior emerges from genetically controlled simple behavioral motifs in zebrafish

2021 ◽  
Author(s):  
Ariel C. Aspiras ◽  
Roy Harpaz ◽  
Sydney Chambule ◽  
Sierra Tseng ◽  
Florian Engert ◽  
...  

AbstractSince Darwin, coordinated movement of animal groups has been believed to be essential to species survival, but it is not understood how changes in the genetic makeup of individuals might alter behavior of the collective. Here we find that even at the early larval stage, zebrafish regulate their proximity and alignment with each other. Two simple visual responses, one that measures relative visual field occupancy and the other global visual motion, suffice to account for the group behavior that emerges. We analyze how mutations in genes known to affect social behavior of humans perturb these simple reflexes in larval zebrafish and thereby affect their collective behaviors. We use model simulations to show that changes in reflexive responses of individual mutant animals predict well the distinctive collective patterns that emerge in a group. Hence group behaviors reflect in part genetically defined primitive sensorimotor “motifs”, which are evident even in young larvae.Long AbstractCoordinated movement of animal groups is essential to species survival. It is not clear whether there are simple interactions among the individuals that account for group behaviors, nor when they arise during development. Zebrafish at the early larval stage do not manifest obvious tendencies to form groups, but we find here that they have already established mechanisms to regulate proximity and alignment with respect to their neighbors, which are the two key ingredients of shoaling and schooling. Specifically, we show that two basic reflexes are sufficient to explain a large part of emerging collective behaviors. First, young larvae repel away from regions of high visual clutter, leading to a dispersal of the group. At later developmental stages, this dispersal reflex shifts to attraction and aggregation behaviors. Second, larvae display a strong tendency to move along with whole field motion stimuli, a well-described behavior known as the optomotor reflex (OMR). When applied to individuals swimming within a group, this reflex leads to an emergence of mutual alignment between close neighbors and induces collective motion of the whole group. The combined developmental maturation of both reflexes can then explain emergent shoaling and schooling behavior.In order to probe the link between single genetic mutations and emergent collective motion, we select fish with mutations in genes orthologous to those associated with human behavioral disorders and find that these mutations affect the primitive visuomotor behaviors at a very young age and persist over development. We then use model simulations to show that the phenotypic manifestations of these mutations are predictive of changes in the emergent collective behaviors of mutant animals. Indeed, models based solely on these two primitive motor reflexes can synergistically account for a large fraction of the distinctive emergent group behaviors across ages and genetic backgrounds. Our results indicate that complex interactions among individuals in a group are built upon genetically defined primitive sensorimotor “motifs”, which are evident even in young larvae at a time when the nervous system is far less complex and more directly accessible to detailed analysis.

2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Erik Cuevas ◽  
Mauricio González ◽  
Daniel Zaldivar ◽  
Marco Pérez-Cisneros ◽  
Guillermo García

A metaheuristic algorithm for global optimization called the collective animal behavior (CAB) is introduced. Animal groups, such as schools of fish, flocks of birds, swarms of locusts, and herds of wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around a central locations, or migrating over large distances in aligned groups. These collective behaviors are often advantageous to groups, allowing them to increase their harvesting efficiency, to follow better migration routes, to improve their aerodynamic, and to avoid predation. In the proposed algorithm, the searcher agents emulate a group of animals which interact with each other based on the biological laws of collective motion. The proposed method has been compared to other well-known optimization algorithms. The results show good performance of the proposed method when searching for a global optimum of several benchmark functions.


2021 ◽  
Author(s):  
Xu Li ◽  
Tingting Xue ◽  
Yu Sun ◽  
Jingfang Fan ◽  
Hui Li ◽  
...  

Abstract Living systems are full of astonishing diversity and complexity of life. Despite differences in the length scales and cognitive abilities of these systems, collective motion of large groups of individuals can emerge. It is of great importance to seek for the fundamental principles of collective motion, such as phase transitions and their natures. Via an eigen microstate approach, we have found a discontinuous transition of density and a continuous transition of velocity in the Vicsek models of collective motion, which are identified by the finite-size scaling form of order-parameter. At strong noise, living systems behave like gas. With the decrease of noise, the interactions between the particles of a living system become stronger and make them come closer. The living system experiences then a discontinuous gas-liquid like transition of density. The even stronger interactions at smaller noise make the velocity directions of particles become ordered and there is a continuous phase transition of collective motion in addition.


2019 ◽  
Vol 30 (4) ◽  
pp. 968-974 ◽  
Author(s):  
Alexander D M Wilson ◽  
Alicia L J Burns ◽  
Emanuele Crosato ◽  
Joseph Lizier ◽  
Mikhail Prokopenko ◽  
...  

Abstract Animal groups are often composed of individuals that vary according to behavioral, morphological, and internal state parameters. Understanding the importance of such individual-level heterogeneity to the establishment and maintenance of coherent group responses is of fundamental interest in collective behavior. We examined the influence of hunger on the individual and collective behavior of groups of shoaling fish, x-ray tetras (Pristella maxillaris). Fish were assigned to one of two nutritional states, satiated or hungry, and then allocated to 5 treatments that represented different ratios of satiated to hungry individuals (8 hungry, 8 satiated, 4:4 hungry:satiated, 2:6 hungry:satiated, 6:2 hungry:satiated). Our data show that groups with a greater proportion of hungry fish swam faster and exhibited greater nearest neighbor distances. Within groups, however, there was no difference in the swimming speeds of hungry versus well-fed fish, suggesting that group members conform and adapt their swimming speed according to the overall composition of the group. We also found significant differences in mean group transfer entropy, suggesting stronger patterns of information flow in groups comprising all, or a majority of, hungry individuals. In contrast, we did not observe differences in polarization, a measure of group alignment, within groups across treatments. Taken together these results demonstrate that the nutritional state of animals within social groups impacts both individual and group behavior, and that members of heterogenous groups can adapt their behavior to facilitate coherent collective motion.


2001 ◽  
Vol 86 (5) ◽  
pp. 2527-2542 ◽  
Author(s):  
Gregory D. Horwitz ◽  
William T. Newsome

We investigated the role of the superior colliculus (SC) in saccade target selection in rhesus monkeys who were trained to perform a direction-discrimination task. In this task, the monkey discriminated between opposed directions of visual motion and indicated its judgment by making a saccadic eye movement to one of two visual targets that were spatially aligned with the two possible directions of motion in the display. Thus the neural circuits that implement target selection in this task are likely to receive directionally selective visual inputs and be closely linked to the saccadic system. We therefore studied prelude neurons in the intermediate and deep layers of the SC that can discharge up to several seconds before an impending saccade, indicating a relatively high-level role in saccade planning. We used the direction-discrimination task to identify neurons whose prelude activity “predicted” the impending perceptual report several seconds before the animal actually executed the operant eye movement; these “choice predicting” cells comprised ∼30% of the neurons we encountered in the intermediate and deep layers of the SC. Surprisingly, about half of these prelude cells yielded direction-selective responses to our motion stimulus during a passive fixation task. In general, these neurons responded to motion stimuli in many locations around the visual field including the center of gaze where the visual discriminanda were positioned during the direction-discrimination task. Preferred directions generally pointed toward the location of the movement field of the SC neuron in accordance with the sensorimotor demands of the discrimination task. Control experiments indicate that the directional responses do not simply reflect covertly planned saccades. Our results indicate that a small population of SC prelude neurons exhibits properties appropriate for linking stimulus cues to saccade target selection in the context of a visual discrimination task.


2018 ◽  
Author(s):  
Wenlong Tang ◽  
Guoqiang Zhang ◽  
Fabrizio Serluca ◽  
Jingyao Li ◽  
Xiaorui Xiong ◽  
...  

AbstractCollective behaviors of groups of animals, such as schooling and shoaling of fish, are central to species survival, but genes that regulate these activities are not known. Here we parsed collective behavior of groups of adult zebrafish using computer vision and unsupervised machine learning into a set of highly reproducible, unitary, several hundred millisecond states and transitions, which together can account for the entirety of relative positions and postures of groups of fish. Using CRISPR-Cas9 we then targeted for knockout 35 genes associated with autism and schizophrenia. We found mutations in three genes had distinctive effects on the amount of time spent in the specific states or transitions between states. Mutation in immp2l (inner mitochondrial membrane peptidase 2-like gene) enhances states of cohesion, so increases shoaling; mutation in in the Nav1.1 sodium channel, scn1lab+/− causes the fish to remain scattered without evident social interaction; and mutation in the adrenergic receptor, adra1aa−/−, keeps fish close together and retards transitions between states, leaving fish motionless for long periods. Motor and visual functions seemed relatively well-preserved. This work shows that the behaviors of fish engaged in collective activities are built from a set of stereotypical states. Single gene mutations can alter propensities to collective actions by changing the proportion of time spent in these states or the tendency to transition between states. This provides an approach to begin dissection of the molecular pathways used to generate and guide collective actions of groups of animals.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009153
Author(s):  
George Courcoubetis ◽  
Manasi S. Gangan ◽  
Sean Lim ◽  
Xiaokan Guo ◽  
Stephan Haas ◽  
...  

Chemotactic bacteria form emergent spatial patterns of variable cell density within cultures that are initially spatially uniform. These patterns are the result of chemical gradients that are created from the directed movement and metabolic activity of billions of cells. A recent study on pattern formation in wild bacterial isolates has revealed unique collective behaviors of the bacteria Enterobacter cloacae. As in other bacterial species, Enterobacter cloacae form macroscopic aggregates. Once formed, these bacterial clusters can migrate several millimeters, sometimes resulting in the merging of two or more clusters. To better understand these phenomena, we examine the formation and dynamics of thousands of bacterial clusters that form within a 22 cm square culture dish filled with soft agar over two days. At the macroscale, the aggregates display spatial order at short length scales, and the migration of cell clusters is superdiffusive, with a merging acceleration that is correlated with aggregate size. At the microscale, aggregates are composed of immotile cells surrounded by low density regions of motile cells. The collective movement of the aggregates is the result of an asymmetric flux of bacteria at the boundary. An agent-based model is developed to examine how these phenomena are the result of both chemotactic movement and a change in motility at high cell density. These results identify and characterize a new mechanism for collective bacterial motility driven by a transient, density-dependent change in motility.


Impact ◽  
2020 ◽  
Vol 2020 (6) ◽  
pp. 58-59
Author(s):  
Yuki Takahashi

Aquaculture is a method of producing fish, crustaceans, molluscs, aquatic plants, algae and other organisms in a sustainable manner. As the global population continues to grow, so too has demand and, as a result, many marine species have become severely depleted. Aquaculture is a means of sustainably addressing this demand, replenishing wild stocks and rebuilding populations of endangered species. Assistant Professor Yuki Takahashi, from the Graduate School of Fisheries Sciences at Hokkaido University in Japan, is working as part of a collaborative team of researchers from across academia and industry in Japan to adress this issue of sustainability of demand, by developing an aquaculture tank designed to improve the survival rate in the early larval stage.


2019 ◽  
Vol 4 (28) ◽  
pp. eaau7897 ◽  
Author(s):  
Frank Bonnet ◽  
Rob Mills ◽  
Martina Szopek ◽  
Sarah Schönwetter-Fuchs ◽  
José Halloy ◽  
...  

Self-organized collective behavior has been analyzed in diverse types of gregarious animals. Such collective intelligence emerges from the synergy between individuals, which behave at their own time and spatial scales and without global rules. Recently, robots have been developed to collaborate with animal groups in the pursuit of better understanding their decision-making processes. These biohybrid systems make cooperative relationships between artificial systems and animals possible, which can yield new capabilities in the resulting mixed group. However, robots are currently tailor-made to successfully engage with one animal species at a time. This limits the possibilities of introducing distinct species-dependent perceptual capabilities and types of behaviors in the same system. Here, we show that robots socially integrated into animal groups of honeybees and zebrafish, each one located in a different city, allowing these two species to interact. This interspecific information transfer is demonstrated by collective decisions that emerge between the two autonomous robotic systems and the two animal groups. The robots enable this biohybrid system to function at any distance and operates in water and air with multiple sensorimotor properties across species barriers and ecosystems. These results demonstrate the feasibility of generating and controlling behavioral patterns in biohybrid groups of multiple species. Such interspecies connections between diverse robotic systems and animal species may open the door for new forms of artificial collective intelligence, where the unrivaled perceptual capabilities of the animals and their brains can be used to enhance autonomous decision-making, which could find applications in selective “rewiring” of ecosystems.


Sign in / Sign up

Export Citation Format

Share Document