scholarly journals Marchantia polymorpha model reveals conserved infection mechanisms in the vascular wilt fungal pathogen Fusarium oxysporum

2021 ◽  
Author(s):  
Amey Redkar ◽  
Selena Gimenez Ibanez ◽  
Mugdha Sabale ◽  
Bernd Zechmann ◽  
Roberto Solano ◽  
...  

The non-vascular plant Marchantia polymorpha has emerged as a valuable model for studying evolutionarily conserved microbial infection strategies and plant immune responses. However, only a handful of fungal pathogens of Marchantia have been described so far. Here we establish a new pathosystem using the root-infecting vascular wilt fungus Fusarium oxysporum. On angiosperms, this fungus exhibits exquisite adaptation to the plant vascular niche and host-specific pathogenicity, both of which are conferred by lineage-specific effectors secreted during growth in the xylem. We show that F. oxysporum isolates with different lifestyles - pathogenic or endophytic - are able to infect this non-vascular liverwort causing tissue maceration and plant cell killing. Similar to bacterial pathogens, F. oxysporum induces a PAMP-triggered immune response in M. polymorpha. Analysis of isogenic fungal mutants established that infection of Marchantia requires conserved fungal pathogenicity mechanisms such as mitogen activated protein kinases, transcriptional regulators and cell wall remodeling enzymes. Remarkably, lineage-specific virulence effectors are dispensable for infection, most likely due to the absence of xylem tissue in this non-vascular plant. The F. oxysporum - M. polymorpha system provides new insights into the mechanism and evolution of pathogenic and endophytic fungus-plant interactions.

2021 ◽  
Author(s):  
Amey Redkar ◽  
Selena Gimenez Ibanez ◽  
Mugdha Sabale ◽  
Bernd Zechmann ◽  
Roberto Solano ◽  
...  

2013 ◽  
Vol 103 (6) ◽  
pp. 538-544 ◽  
Author(s):  
Glenna M. Malcolm ◽  
Gretchen A. Kuldau ◽  
Beth K. Gugino ◽  
María del Mar Jiménez-Gasco

Much of the current knowledge on population biology and ecology of soilborne fungal pathogens has been derived from research based on populations recovered from plants displaying disease symptoms or soil associated with symptomatic plants. Many soilborne fungal pathogens are known to cause disease on a large number of crop plants, including a variety of important agronomical, horticultural, ornamental, and forest plants species. For instance, the fungus Verticillium dahliae causes disease on >400 host plants. From a phytopathological perspective, plants on which disease symptoms have not been yet observed are considered to be nonhosts for V. dahliae. This term may be misleading because it does not provide information regarding the nature of the plant–fungus association; that is, a nonhost plant may harbor the fungus as an endophyte. Yet, there are numerous instances in the literature where V. dahliae has been isolated from asymptomatic plants; thus, these plants should be considered hosts. In this article, we synthesize scattered research that indicates that V. dahliae, aside from being a successful and significant vascular plant pathogen, may have a cryptic biology on numerous asymptomatic plants as an endophyte. Thus, we suggest here that these endophytic associations among V. dahliae and asymptomatic plants are not unusual relationships in nature. We propose to embrace the broader ecology of many fungi by differentiating between “symptomatic hosts” as those plants in which the infection and colonization by a fungus results in disease, and “asymptomatic hosts” as those plants that harbor the fungus endophytically and are different than true nonhosts that should be used for plant species that do not interact with the given fungus. In fact, if we broaden our definition of “host plant” to include asymptomatic plants that harbor the fungus as an endophyte, it is likely that the host ranges for some soilborne fungal pathogens are much larger than previously envisioned. By ignoring the potential for soilborne fungal pathogens to display endophytic relationships, we leave gaps in our knowledge about the population biology and ecology, persistence, and spread of these fungi in agroecosystems.


Author(s):  
Paula Andrea Castillo-Sanmiguel ◽  
Laura Rocío Cortés-Sánchez ◽  
Jovanna Acero-Godoy

<p>Tomato plants (<em>Solanum lycopersicum</em>) are susceptible to the infection by diverse pathogens that cause devastating diseases such as vascular wilt, which causes great losses at the production level. The fungus <em>Fusarium oxysporum</em> f. sp. <em>lycopersici</em> (<em>Fol</em>) is one of the etiologic agents of this disease and its control lies in the use of synthetic chemicals which generate a negative impact in both health and the environment; thus, it is necessary to implement biological control as a healthier and more efficient alternative. The fungus <em>Trichoderma</em> spp. is a favorable option to be employed as a biocontroller against this pathogen thanks to its antagonist mechanisms, determined by metabolic and genetic characteristics. On the one hand, for <em>Fol</em> it is indispensable the activation of signaling routes such as MAPK Fmk1, MAPK Mpk1 y HOG, while <em>Trichoderma</em> spp. uses effectors involved in the interaction with the plant such as proteins, enzymes and secondary metabolites that also strengthen its immune response against infection, determined by both Pathogen Associated Molecular Patterns (PAMP) and effectors. Therefore, this article makes a review about the mentioned characteristics and suggests a greater application of tools and molecular markers for the management of this disease.</p>


Author(s):  
D. Brayford

Abstract A description is provided for Fusarium oxysporum f. sp. elaeidis. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Elaeis guineensis (Oil palm). May also infect E. oleifera, E. madagascariensis and E. melanococca. DISEASE: Vascular wilt. GEOGRAPHICAL DISTRIBUTION: West and central Africa: Cameroon, Congo, Ivory Coast, Nigeria, Zaire. Possibly Colombia. TRANSMISSION: Contaminated soil or plant material. Potentially by means of seed (52, 4182).


Author(s):  
D. Brayford

Abstract A description is provided for Fusarium oxysporum f. sp. melonis. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Cucumis melo (Muskmelon, Cantaloupe). DISEASE: Vascular wilt. GEOGRAPHICAL DISTRIBUTION: IMI Distribution Map 496. Africa: Morocco, Zimbabwe. Asia: India, Iraq, Iran, Israel, Japan, Korea, Lebanon, Philippines, Saudi Arabia, Thailand, USSR. Australasia: Australia. Europe: Belgium, France, Germany, Great Britain, Greece, Netherlands, Turkey. America: Canada, USA. TRANSMISSION: The fungus is soil borne and may be tramsmitted by seed.


Author(s):  
C. Booth

Abstract A description is provided for Fusarium oxysporum f.sp. vasinfectum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On Gossypium spp., and species of Cajanus, Coffea, Hevea, Hibiscus, Medicago, Ricinus, Solanum and Vigna. DISEASE: Vascular wilt or Fusariosis of cotton is a disease affecting its host at all stages of its growth. Early symptoms on seedlings consist of vein clearing of the leaves followed by necrosis of the interveinal tissue and death of the leaves. On older plants leaves become chlorotic and the vascular tissues show a brown discolouration. Growth is retarded and the plant eventually wilts. GEOGRAPHICAL DISTRIBUTION: Africa: Congo, Central African Republic, Egypt, Ethiopia, Madagascar, Senegal, Somalia, Sudan, South Africa, Tanganyika, Uganda; Asia: Burma, China, Formosa, India, Indo-China, Iran, Iraq, Pakistan, U.S.S.R. ; Europe: France, Greece, Italy, Romania, Yugoslavia; North America, Mexico, U.S.A. (cotton belt); Central America & West Indies: Guatemala, Nevis, Nicaragua, Puerto Rico, Salvador, St. Vincent; South America: Argentina, Brazil, Chile, Colombia, Peru, Venezuela. (C.M.I. Map 362). TRANSMISSION: Soil-borne, but may also be transmitted by water and seed. The pathogen has been recovered from delineated seed obtained from infected cotton plants in the Central African Republic, Congo, Tanganyika and Brazil (32: 186; 33: 143; 40: 754; 41: 389). The percentage infection ranged from 0.2 to 5.0.


2001 ◽  
Vol 2 (1) ◽  
pp. 15 ◽  
Author(s):  
J. B. Ochoa ◽  
B. Yangari ◽  
V. Galarza ◽  
J. Fiallos ◽  
M. A. Ellis

Farmers have generally abandoned production of “common naranjilla” in many areas mainly due to uncontrollable epidemics of an apparent vascular wilt disease. Naranjilla vascular wilt (NVW) and is currently the major constraint to the production of naranjilla in Ecuador, where losses due to NVW may reach up to 80%. Accepted for publication 13 September 2001. Published 18 September 2001.


2021 ◽  
Vol 38 (1) ◽  
pp. 20-37
Author(s):  
Yohana Patricia Anama ◽  
Ricardo Díaz ◽  
David Esteban Duarte-Alvarado ◽  
Tulio Cesar Lagos-Burbano

Fusarium oxysporum is one of the most limiting fungal pathogens of lulo crop. To determine its pathogenicity, this work morphologically and pathogenically characterized F. oxysporum isolates from different lulo-growing municipalities of the Department of Nariño. Twenty isolates were evaluated through a completely randomized design with two factors and three replicates per treatment, including a control. The first factor corresponded to 20 isolates of F. oxysporum and the second to 10 lulo genotypes. The morphological characterization involved determining growth rate (GR), color (CO), mycelial type (MT), medium coloration (Mc), shape (Sh), size (S), number (N) of macroconidial (Ma) and microconidial (Mi) septa, presence of chlamydospores (PC), and chlamydospore shape (CS). Moreover, the pathogenic characterization was based on the incubation period (IP), absolute growth rate (AGR), disease severity (DS), disease incidence (I), and vascular discoloration (VD). The morphological characterization demonstrated that all isolates corresponded to F. oxysporum. For IP, genotype G1 showed the lowest average at 18 days. For AGR, genotype G2 had the lowest height increase at 0.05 cm.day-1. For DS, genotype G1 reached the highest severity level (level 9) and a disease incidence of 100%. This study provides the first report of the special form of F. oxysporum f. sp. quitoense in Nariño. Solanum hirtum, Solanum sessiliflorum, and Solanum estramonifolium were resistant to the isolates evaluated, demonstrating that wild species should be considered as sources of resistance for breeding programs aiming to obtain resistant commercial genotypes.


2021 ◽  
Author(s):  
Gonzalo Soriano ◽  
Sophie Kneeshaw ◽  
Guillermo H Jimenez-Aleman ◽  
Angel M. Zamarreno ◽  
Jose Manuel Franco-Zorrilla ◽  
...  

Jasmonates are fatty acid derived hormones that regulate multiple aspects of plant development, growth and stress responses. Bioactive jasmonates, defined as the ligands of the conserved COI1 receptor, differ between vascular plants and bryophytes (using jasmonoyl-L-isoleucine; JA-Ile and dinor-12-oxo-10,15(Z)-phytodienoic acid; dn-OPDA, respectively). Whilst the biosynthetic pathways of JA-Ile in the model vascular plant Arabidopsis thaliana have been elucidated, the details of dn-OPDA biosynthesis in bryophytes are still unclear. Here, we identify an ortholog of Arabidopsis Fatty Acid Desaturase 5 (AtFAD5) in the model liverwort Marchantia polymorpha and show that FAD5 function is ancient and conserved between species separated by more than 450 million years of independent evolution. Similar to AtFAD5, MpFAD5 is required for the synthesis of 7Z-hexadecenoic acid. Consequently, in Mpfad5 mutants the hexadecanoid pathway is blocked, dn-OPDA levels almost completely depleted and normal chloroplast development is impaired. Our results demonstrate that the main source of dn-OPDA in Marchantia is the hexadecanoid pathway and the contribution of the octadecanoid pathway, i.e. from OPDA, is minimal. Remarkably, despite extremely low levels of dn-OPDA, MpCOI1-mediated responses to wounding and insect feeding can still be activated in Mpfad5, suggesting that dn-OPDA is not the only bioactive jasmonate and COI1 ligand in Marchantia.


Sign in / Sign up

Export Citation Format

Share Document