scholarly journals Structural and energetic profiling of SARS-CoV-2 antibody recognition and the impact of circulating variants

2021 ◽  
Author(s):  
Rui Yin ◽  
Johnathan D Guest ◽  
Ghazaleh Taherzadeh ◽  
Ragul Gowthaman ◽  
Ipsa Mittra ◽  
...  

The SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of protective antibody responses. This is underscored by the emergence and spread of SARS-CoV-2 variants, including B.1.1.7, P1, and B.1.351, some of which appear to be less effectively targeted by current monoclonal antibodies and vaccines. Here we report a high resolution and comprehensive map of antibody recognition of the SARS-CoV-2 spike receptor binding domain (RBD), which is the target of most neutralizing antibodies, using computational structural analysis. With a dataset of nonredundant experimentally determined antibody-RBD structures, we classified antibodies by RBD residue binding determinants using unsupervised clustering. We also identified the energetic and conservation features of epitope residues and assessed the capacity of viral variant mutations to disrupt antibody recognition, revealing sets of antibodies predicted to effectively target recently described viral variants. This detailed structure-based reference of antibody RBD recognition signatures can inform therapeutic and vaccine design strategies.

2021 ◽  
Vol 17 (9) ◽  
pp. e1009380
Author(s):  
Rui Yin ◽  
Johnathan D. Guest ◽  
Ghazaleh Taherzadeh ◽  
Ragul Gowthaman ◽  
Ipsa Mittra ◽  
...  

The SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of protective antibody responses. This is underscored by the emergence and spread of SARS-CoV-2 variants, including Alpha (B.1.1.7) and Delta (B.1.617.2), some of which appear to be less effectively targeted by current monoclonal antibodies and vaccines. Here we report a high resolution and comprehensive map of antibody recognition of the SARS-CoV-2 spike receptor binding domain (RBD), which is the target of most neutralizing antibodies, using computational structural analysis. With a dataset of nonredundant experimentally determined antibody-RBD structures, we classified antibodies by RBD residue binding determinants using unsupervised clustering. We also identified the energetic and conservation features of epitope residues and assessed the capacity of viral variant mutations to disrupt antibody recognition, revealing sets of antibodies predicted to effectively target recently described viral variants. This detailed structure-based reference of antibody RBD recognition signatures can inform therapeutic and vaccine design strategies.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 633
Author(s):  
Yeong Jun Kim ◽  
Ui Soon Jang ◽  
Sandrine M. Soh ◽  
Joo-Youn Lee ◽  
Hye-Ra Lee

A new variant of SARS-CoV-2 B.1.351 lineage (first found in South Africa) has been raising global concern due to its harboring of multiple mutations in the spike that potentially increase transmissibility and yield resistance to neutralizing antibodies. We here tested infectivity and neutralization efficiency of SARS-CoV-2 spike pseudoviruses bearing particular mutations of the receptor-binding domain (RBD) derived either from the Wuhan strains (referred to as D614G or with other sites) or the B.1.351 lineage (referred to as N501Y, K417N, and E484K). The three different pseudoviruses B.1.351 lineage related significantly increased infectivity compared with other mutants that indicated Wuhan strains. Interestingly, K417N and E484K mutations dramatically enhanced cell–cell fusion than N501Y even though their infectivity were similar, suggesting that K417N and E484K mutations harboring SARS-CoV-2 variant might be more transmissible than N501Y mutation containing SARS-CoV-2 variant. We also investigated the efficacy of two different monoclonal antibodies, Casirivimab and Imdevimab that neutralized SARS-CoV-2, against several kinds of pseudoviruses which indicated Wuhan or B.1.351 lineage. Remarkably, Imdevimab effectively neutralized B.1.351 lineage pseudoviruses containing N501Y, K417N, and E484K mutations, while Casirivimab partially affected them. Overall, our results underscore the importance of B.1.351 lineage SARS-CoV-2 in the viral spread and its implication for antibody efficacy.


2021 ◽  
Author(s):  
Shuo Du ◽  
Pulan Liu ◽  
Zhiying Zhang ◽  
Tianhe Xiao ◽  
Ayijiang Yasimayi ◽  
...  

The spread of the SARS-CoV-2 variants could seriously dampen the global effort to tackle the COVID-19 pandemic. Recently, we investigated the humoral antibody responses of SARS-CoV-2 convalescent patients and vaccinees towards circulating variants, and identified a panel of monoclonal antibodies (mAbs) that could efficiently neutralize the B.1.351 (Beta) variant. Here we investigate how these mAbs target the B.1.351 spike protein using cryo-electron microscopy. In particular, we show that two superpotent mAbs, BD-812 and BD-836, have non-overlapping epitopes on the receptor-binding domain (RBD) of spike. Both block the interaction between RBD and the ACE2 receptor; and importantly, both remain fully efficacious towards the B.1.617.1 (Kappa) and B.1.617.2 (Delta) variants. The BD-812/BD-836 pair could thus serve as an ideal antibody cocktail against the SARS-CoV-2 VOCs.


Author(s):  
C Rees-Spear ◽  
L Muir ◽  
SA Griffith ◽  
J Heaney ◽  
Y Aldon ◽  
...  

AbstractMultiple SARS-CoV-2 vaccines have shown protective efficacy, which is most likely mediated by neutralizing antibodies recognizing the viral entry protein, Spike. Antibodies from SARS-CoV-2 infection neutralize the virus by focused targeting of Spike and there is limited serum cross-neutralization of the closely-related SARS-CoV. As new SARS-CoV-2 variants are rapidly emerging, exemplified by the B.1.1.7, 501Y.V2 and P.1 lineages, it is critical to understand if antibody responses induced by infection with the original SARS-CoV-2 virus or the current vaccines will remain effective against virus variants. In this study we evaluate neutralization of a series of mutated Spike pseudotypes including a B.1.1.7 Spike pseudotype. The analyses of a panel of Spike-specific monoclonal antibodies revealed that the neutralizing activity of some antibodies was dramatically reduced by Spike mutations. In contrast, polyclonal antibodies in the serum of patients infected in early 2020 remained active against most mutated Spike pseudotypes. The majority of serum samples were equally able to neutralize the B.1.1.7 Spike pseudotype, however potency was reduced in a small number of samples (3 of 36) by 5–10-fold. This work highlights that changes in the SARS-CoV-2 Spike can alter neutralization sensitivity and underlines the need for effective real-time monitoring of emerging mutations and their impact on vaccine efficacy.


2021 ◽  
Author(s):  
Fatima Amanat ◽  
Shirin Strohmeier ◽  
Wen-Hsin Lee ◽  
Sandhya Bangaru ◽  
Andrew B Ward ◽  
...  

After first emerging in December 2019 in China, severe acute respiratory syndrome 2 (SARS-CoV-2) has since caused a pandemic leading to millions of infections and deaths worldwide. Vaccines have been developed and authorized but supply of these vaccines is currently limited. With new variants of the virus now emerging and spreading globally, it is essential to develop therapeutics that are broadly protective and bind conserved epitopes in the receptor binding domain (RBD) or the whole spike of SARS-CoV-2. In this study, we have generated mouse monoclonal antibodies (mAbs) against different epitopes on the RBD and assessed binding and neutralization against authentic SARS-CoV-2. We have demonstrated that antibodies with neutralizing activity, but not non-neutralizing antibodies, lower viral titers in the lungs when administered in a prophylactic setting in vivo in a mouse challenge model. In addition, most of the mAbs cross-neutralize the B.1.351 as well as the B.1.1.7 variants in vitro.


2021 ◽  
Vol 6 (3) ◽  
pp. 151
Author(s):  
Daniela Loconsole ◽  
Anna Sallustio ◽  
Francesca Centrone ◽  
Daniele Casulli ◽  
Maurizio Mario Ferrara ◽  
...  

The SARS-CoV-2 P.1 variant of concern (VOC) was first identified in Brazil and is now spreading in European countries. It is characterized by the E484K mutation in the receptor-binding domain, which could contribute to the evasion from neutralizing antibodies. In Italy, this variant was first identified in January 2021. Here, we report an autochthonous outbreak of SARS-CoV-2 P.1 variant infections in southern Italy in subjects who had not travelled to endemic areas or outside the Apulia region. The outbreak involved seven subjects, three of whom had received a COVID-19 vaccine (one had received two doses and two had received one dose). Four patients had a mild clinical presentation. Laboratory investigations of nasopharyngeal swabs revealed that all strains were S-gene target failure-negative and molecular tests revealed they were the P.1 variant. Whole-genome sequencing confirmed that five subjects were infected with closely related strains classified as the P.1 lineage. The circulation of VOCs highlights the importance of strictly monitoring the spread of SARS-CoV-2 variants through genomic surveillance and of investigating local outbreaks. Furthermore, public health measures including social distancing, screening, and quarantine for travelers are key tools to slow down the viral transmission and to contain and mitigate the impact of VOC diffusion, and rapid scaling-up of vaccination is crucial to avoid a possible new epidemic wave.


2020 ◽  
Author(s):  
Matthew L. Goodwin ◽  
Helen S. Webster ◽  
Hsuan-Yuan Wang ◽  
Jennifer A. Jenks ◽  
Cody S. Nelson ◽  
...  

AbstractHuman cytomegalovirus (HCMV) is the most common congenital infection, and the leading nongenetic cause of sensorineural hearing loss (SNHL) in newborns globally. A gB subunit vaccine administered with adjuvent MF59 (gB/MF59) is the most efficacious tested to-date, achieving 50% efficacy in preventing infection of HCMV-seronegative mothers. We recently discovered that gB/MF59 vaccination elicited primarily non-neutralizing antibody responses, that HCMV strains acquired by vaccinees more often included strains with gB genotypes that are distinct from the vaccine antigen, and that protection against HCMV acquisition correlated with ability of vaccine-elicited antibodies to bind to membrane associated gB. Thus, we hypothesized that gB-specific non-neutralizing antibody binding breadth and function are dependent on their epitope and genotype specificity as well as their ability to interact with membrane-associated gB. Twenty-four gB-specific monoclonal antibodies (mAbs) isolated from naturally HCMV-infected individuals were mapped for gB domain specificity by binding antibody multiplex assay (BAMA) and for genotype preference binding to membrane-associated gB presented on transfected cells. We defined their non-neutralizing functions including antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC). The isolated gB-specific non-neutralizing mAbs were primarily specific for Domain II and linear antigenic domain 2 site 2 (AD2). We observed variability in mAb gB genotype binding preference, with increased binding to gB genotypes 2 and 4. Functional studies identified two gB-specific mAbs that facilitate ADCP and have binding specificities of AD2 and Domain II. This investigation provides novel understanding on the impact of gB domain specificity and antigenic variability on gB-specific non-neutralizing antibody responses.ImportanceHCMV is the most common congenital infection worldwide, but development of a successful vaccine remains elusive. gB-specific non-neutralizing mAbs, represent a distinct anti-HCMV Ab subset implicated in the protection against primary infection during numerous phase-II gB/MF59 vaccine trials. By studying non-neutralizing gB-specific mAbs from naturally infected individuals, this study provides novel characterization of binding site specificity, genotypic preference, and effector cell functions mediated by mAbs elicited in natural infection. We found that a panel of twenty-four gB-specific non-neutralizing mAbs bind across multiple regions of the gB protein, traditionally through to be targeted by neutralizing mAbs only, and bind differently to gB depending if the protein is soluble versus embedded in a membrane. This investigation provides novel insight into the gB-specific binding characteristics and effector cell functions mediated by non-neutralizing gB-specific mAbs elicited through natural infection, providing new endpoints for future vaccine development.


2021 ◽  
Author(s):  
Carl Graham ◽  
Jeffrey Seow ◽  
Isabella Huettner ◽  
Hataf Khan ◽  
Neophytos Kouphou ◽  
...  

The interaction of the SARS–CoV–2 Spike receptor binding domain (RBD) with the ACE2 receptor on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS–CoV–2 variants has revealed mutations arising in the RBD, the N–terminal domain (NTD) and S2 subunits of Spike. To fully understand how these mutations affect the antigenicity of Spike, we have isolated and characterized neutralizing antibodies targeting epitopes beyond the already identified RBD epitopes. Using recombinant Spike as a sorting bait, we isolated >100 Spike–reactive monoclonal antibodies from SARS–CoV–2 infected individuals. ≈45% showed neutralizing activity of which ≈20% were NTD–specific. None of the S2–specific antibodies showed neutralizing activity. Competition ELISA revealed that NTD–specific mAbs formed two distinct groups: the first group was highly potent against infectious virus, whereas the second was less potent and displayed glycan–dependant neutralization activity. Importantly, mutations present in B.1.1.7 Spike frequently conferred resistance to neutralization by the NTD–specific neutralizing antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes need to be considered when investigating antigenic drift in emerging variants.


2020 ◽  
Vol 5 (52) ◽  
pp. eabe0367 ◽  
Author(s):  
Anita S. Iyer ◽  
Forrest K. Jones ◽  
Ariana Nodoushani ◽  
Meagan Kelly ◽  
Margaret Becker ◽  
...  

We measured plasma and/or serum antibody responses to the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2 in 343 North American patients infected with SARS-CoV-2 (of which 93% required hospitalization) up to 122 days after symptom onset and compared them to responses in 1548 individuals whose blood samples were obtained prior to the pandemic. After setting seropositivity thresholds for perfect specificity (100%), we estimated sensitivities of 95% for IgG, 90% for IgA, and 81% for IgM for detecting infected individuals between 15 and 28 days after symptom onset. While the median time to seroconversion was nearly 12 days across all three isotypes tested, IgA and IgM antibodies against RBD were short-lived with median times to seroreversion of 71 and 49 days after symptom onset. In contrast, anti-RBD IgG responses decayed slowly through 90 days with only 3 seropositive individuals seroreverting within this time period. IgG antibodies to SARS-CoV-2 RBD were strongly correlated with anti-S neutralizing antibody titers, which demonstrated little to no decrease over 75 days since symptom onset. We observed no cross-reactivity of the SARS-CoV-2 RBD-targeted antibodies with other widely circulating coronaviruses (HKU1, 229 E, OC43, NL63). These data suggest that RBD-targeted antibodies are excellent markers of previous and recent infection, that differential isotype measurements can help distinguish between recent and older infections, and that IgG responses persist over the first few months after infection and are highly correlated with neutralizing antibodies.


Science ◽  
2020 ◽  
Vol 369 (6506) ◽  
pp. 956-963 ◽  
Author(s):  
Thomas F. Rogers ◽  
Fangzhu Zhao ◽  
Deli Huang ◽  
Nathan Beutler ◽  
Alison Burns ◽  
...  

Countermeasures to prevent and treat coronavirus disease 2019 (COVID-19) are a global health priority. We enrolled a cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–recovered participants, developed neutralization assays to investigate antibody responses, adapted our high-throughput antibody generation pipeline to rapidly screen more than 1800 antibodies, and established an animal model to test protection. We isolated potent neutralizing antibodies (nAbs) to two epitopes on the receptor binding domain (RBD) and to distinct non-RBD epitopes on the spike (S) protein. As indicated by maintained weight and low lung viral titers in treated animals, the passive transfer of a nAb provides protection against disease in high-dose SARS-CoV-2 challenge in Syrian hamsters. The study suggests a role for nAbs in prophylaxis, and potentially therapy, of COVID-19. The nAbs also define protective epitopes to guide vaccine design.


Sign in / Sign up

Export Citation Format

Share Document