scholarly journals The Nestin neural enhancer is essential for normal levels of endogenous Nestin in neuroprogenitors but is not required for embryo development

2021 ◽  
Author(s):  
Ella Thomson ◽  
Ruby Dawson ◽  
Chee Ho H'ng ◽  
Fatwa Adikusuma ◽  
Sandra Piltz ◽  
...  

Enhancers are vitally important during embryonic development to control the spatial and temporal expression of genes. Recently, large scale genome projects have identified a vast number of putative developmental regulatory elements. However, the proportion of these that have been functionally assessed is relatively low. While enhancers have traditionally been studied using reporter assays, this approach does not characterise their contribution to endogenous gene expression. We have studied the murine Nestin (Nes) intron 2 enhancer, which is widely used to direct exogenous gene expression within neural progenitor cells in cultured cells and in vivo. We generated CRISPR deletions of the enhancer region in mice and assessed their impact on Nes expression during embryonic development. Loss of the Nes neural enhancer significantly reduced Nes expression in the developing CNS by as much as 82%. By assessing NES protein localization, we also show that this enhancer region contains repressor element(s) that inhibit Nes expression within the vasculature. Previous reports have stated that Nes is an essential gene, and its loss causes embryonic lethality. We also generated 2 independent Nes null lines and show that both develop without any obvious phenotypic effects. Finally, through crossing of null and enhancer deletion mice we provide evidence of trans-chromosomal interaction of the Nes enhancer and promoter.

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258538
Author(s):  
Ella Thomson ◽  
Ruby Dawson ◽  
Chee Ho H’ng ◽  
Fatwa Adikusuma ◽  
Sandra Piltz ◽  
...  

Enhancers are vitally important during embryonic development to control the spatial and temporal expression of genes. Recently, large scale genome projects have identified a vast number of putative developmental regulatory elements. However, the proportion of these that have been functionally assessed is relatively low. While enhancers have traditionally been studied using reporter assays, this approach does not characterise their contribution to endogenous gene expression. We have studied the murine Nestin (Nes) intron 2 enhancer, which is widely used to direct exogenous gene expression within neural progenitor cells in cultured cells and in vivo. We generated CRISPR deletions of the enhancer region in mice and assessed their impact on Nes expression during embryonic development. Loss of the Nes neural enhancer significantly reduced Nes expression in the developing CNS by as much as 82%. By assessing NES protein localization, we also show that this enhancer region contains repressor element(s) that inhibit Nes expression within the vasculature. Previous reports have stated that Nes is an essential gene, and its loss causes embryonic lethality. We also generated 2 independent Nes null lines and show that both develop without any obvious phenotypic effects. Finally, through crossing of null and enhancer deletion mice we provide evidence of trans-chromosomal interaction of the Nes enhancer and promoter.


2019 ◽  
Vol 35 (20) ◽  
pp. 3931-3936 ◽  
Author(s):  
Xin Huang ◽  
Xudong Gao ◽  
Wanying Li ◽  
Shuai Jiang ◽  
Ruijiang Li ◽  
...  

Abstract Motivation During development of the mammalian embryo, histone modification H3K4me3 plays an important role in regulating gene expression and exhibits extensive reprograming on the parental genomes. In addition to these dramatic epigenetic changes, certain unchanging regulatory elements are also essential for embryonic development. Results Using large-scale H3K4me3 chromatin immunoprecipitation sequencing data, we identified a form of H3K4me3 that was present during all eight stages of the mouse embryo before implantation. This ‘stable H3K4me3’ was highly accessible and much longer than normal H3K4me3. Moreover, most of the stable H3K4me3 was in the promoter region and was enriched in higher chromatin architecture. Using in-depth analysis, we demonstrated that stable H3K4me3 was related to higher gene expression levels and transcriptional initiation during embryonic development. Furthermore, stable H3K4me3 was much more active in blood tumor cells than in normal blood cells, suggesting a potential mechanism of cancer progression. Supplementary information Supplementary data are available at Bioinformatics online.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 319-329 ◽  
Author(s):  
S Dziennis ◽  
RA Van Etten ◽  
HL Pahl ◽  
DL Morris ◽  
TL Rothstein ◽  
...  

Abstract CD11b is the alpha chain of the Mac-1 integrin and is preferentially expressed in myeloid cells (neutrophils, monocytes, and macrophages). We have previously shown that the CD11b promoter directs cell-type- specific expression in myeloid lines using transient transfection assays. To confirm that these promoter sequences contain the proper regulatory elements for correct myeloid expression of CD11b in vivo, we have used the -1.7-kb human CD11b promoter to direct reporter gene expression in transgenic mice. Stable founder lines were generated with two different reporter genes, a Thy 1.1 surface marker and the Escherichia coli lacZ (beta-galactosidase) gene. Analysis of founders generated with each reporter demonstrated that the CD11b promoter was capable of driving high levels of transgene expression in murine macrophages for the lifetime of the animals. Similar to the endogenous gene, transgene expression was preferentially found in mature monocytes, macrophages, and neutrophils and not in myeloid precursors. These experiments indicate that the -1.7 CD11b promoter contains the regulatory elements sufficient for high-level macrophage expression. This promoter should be useful for targeting heterologous gene expression to mature myeloid cells.


Science ◽  
2021 ◽  
pp. eabi8870
Author(s):  
Saba Parvez ◽  
Chelsea Herdman ◽  
Manu Beerens ◽  
Korak Chakraborti ◽  
Zachary P. Harmer ◽  
...  

CRISPR-Cas9 can be scaled up for large-scale screens in cultured cells, but CRISPR screens in animals have been challenging because generating, validating, and keeping track of large numbers of mutant animals is prohibitive. Here, we report Multiplexed Intermixed CRISPR Droplets (MIC-Drop), a platform combining droplet microfluidics, single-needle en masse CRISPR ribonucleoprotein injections, and DNA barcoding to enable large-scale functional genetic screens in zebrafish. The platform can efficiently identify genes responsible for morphological or behavioral phenotypes. In one application, we show MIC-Drop can identify small molecule targets. Furthermore, in a MIC-Drop screen of 188 poorly characterized genes, we discover several genes important for cardiac development and function. With the potential to scale to thousands of genes, MIC-Drop enables genome-scale reverse-genetic screens in model organisms.


2019 ◽  
Author(s):  
Ugur M. Ayturk ◽  
Joseph P. Scollan ◽  
Alexander Vesprey ◽  
Christina M. Jacobsen ◽  
Paola Divieti Pajevic ◽  
...  

ABSTRACTSingle cell RNA-seq (scRNA-seq) is emerging as a powerful technology to examine transcriptomes of individual cells. We determined whether scRNA-seq could be used to detect the effect of environmental and pharmacologic perturbations on osteoblasts. We began with a commonly used in vitro system in which freshly isolated neonatal mouse calvarial cells are expanded and induced to produce a mineralized matrix. We used scRNA-seq to compare the relative cell type abundances and the transcriptomes of freshly isolated cells to those that had been cultured for 12 days in vitro. We observed that the percentage of macrophage-like cells increased from 6% in freshly isolated calvarial cells to 34% in cultured cells. We also found that Bglap transcripts were abundant in freshly isolated osteoblasts but nearly undetectable in the cultured calvarial cells. Thus, scRNA-seq revealed significant differences between heterogeneity of cells in vivo and in vitro. We next performed scRNA-seq on freshly recovered long bone endocortical cells from mice that received either vehicle or Sclerostin-neutralizing antibody for 1 week. Bone anabolism-associated transcripts were also not significantly increased in immature and mature osteoblasts recovered from Sclerostin-neutralizing antibody treated mice; this is likely a consequence of being underpowered to detect modest changes in gene expression, since only 7% of the sequenced endocortical cells were osteoblasts, and a limited portion of their transcriptomes were sampled. We conclude that scRNA-seq can detect changes in cell abundance, identity, and gene expression in skeletally derived cells. In order to detect modest changes in osteoblast gene expression at the single cell level in the appendicular skeleton, larger numbers of osteoblasts from endocortical bone are required.


2019 ◽  
Author(s):  
Robin A. Sorg ◽  
Clement Gallay ◽  
Jan-Willem Veening

AbstractStreptococcus pneumoniae can cause disease in various human tissues and organs, including the ear, the brain, the blood and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in S. pneumoniae. A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND and IMPLY gates. Finally, we demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of S. pneumoniae.


1999 ◽  
Vol 73 (12) ◽  
pp. 9781-9788 ◽  
Author(s):  
Ling Jin ◽  
Gail Scherba

ABSTRACT Like other alphaherpesviruses, pseudorabies virus (PrV) exhibits restricted gene expression during latency. These latency-associated transcripts (LATs) are derived from the region located within 0.69 to 0.77 map units of the viral genome. However, the presence of such viral RNAs during a productive infection has not been described. Although several transcripts originating between 0.706 to 0.737 map units have been detected in PrV-infected cultured cells, their relationship to the LATs has not been examined. Therefore, to determine if any correlation exists between PrV LAT gene expression in the natural and laboratory systems, transcription from the LAT gene region during lytic infection of cultured neuronal and nonneuronal cells was evaluated. A Northern blot assay using single-stranded RNA probes complementary to the spliced in vivo 8.4-kb largest latency transcript (LLT) detected 1.0-, 2.0-, and 8.0-kb poly(A) RNAs in all PrV-infected cells lines. The 1.0- and 8.0-kb transcripts partially overlapped the first and second exons of the LLT, respectively. In contrast, portions of both LLT exons comprised the 2.0-kb RNA sequence, which lacked the same intron as the LLT. Generation of this transcript began about 243 bp downstream of the LLT initiation site and terminated near the junction of BamHI fragments 8′ and 8. Its synthesis was inhibited by cycloheximide but not by cytosine β-d-arabinofuranoside, which suggests that the 2.0-kb RNA is not an immediate-early gene product. Thus, although the PrV LAT gene is transcriptionally active during a productive infection of cultured cells, the resulting RNAs are distinctive from the LLT.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Ozanna Burnicka-Turek ◽  
Michael Broman ◽  
Jeffrey D Steimle ◽  
Bastiaan Boukens ◽  
Nataliya B Petrenko ◽  
...  

The heart beats 2 billion times over the average human lifespan and is the manifestation of a pattern of cardiomyocyte depolarization organized by a specialized network of cardiomyocytes, the cardiac conduction system (CCS). Patterning of the CCS into atrial node versus ventricular conduction system (VCS) components with distinct physiology is essential for the normal heartbeat and has been recognized for more than a century. However molecular basis of this regional patterning is not well understood. Using mouse genetics, we found that the ratio between T-box transcriptional activator, Tbx5 , and T-box transcriptional repressor, Tbx3 , determines the molecular and functional output of VCS myocytes. Adult VCS-specific removal of Tbx5 or overexpression of Tbx3 re-patterned the fast VCS into slow, nodal-like cells based on molecular, cellular and functional criteria. Specifically, the ventricular fast conduction gene expression network was lost whereas the slow conduction nodal gene expression network was retained. Action potentials (APs) of Tbx5 -deficient VCS myocytes adopted nodal-specific characteristics, including increased AP duration and cellular automaticity. Removal of Tbx5 in-vivo precipitated inappropriate depolarizations in the His-bundle that initiated lethal ventricular arrhythmias. A T-box rheostat mechanism for CCS patterning was confirmed by Tbx5/Tbx3 genetic interaction studies. TBX5 bound and directly activated cis -regulatory elements at fast conduction loci genome-wide, defining the identity of the adult VCS. Furthermore, TBX5 bound and activated cis-regulatory elements at Tbx5 itself, describing a multi-tiered T-box-dependent fast conduction gene regulatory network (GRN). The hierarchical GRN established a bi-stable network in mathematical modeling, with only high or low fast conduction gene expression states, suggesting a genomic mechanism for the establishment of VCS versus nodal states in-vivo . Thus, the CCS is patterned entirely as a slow, nodal ground state, with a T-box dependent, physiologically dominant, fast conduction network driven specifically in the VCS. Disruption of the fast VCS GRN allowed nodal physiology to emerge, providing a molecular mechanism for some lethal ventricular arrhythmias.


Biology Open ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. bio055343 ◽  
Author(s):  
Daniel Chu ◽  
An Nguyen ◽  
Spenser S. Smith ◽  
Zuzana Vavrušová ◽  
Richard A. Schneider

ABSTRACTPrecisely altering gene expression is critical for understanding molecular processes of embryogenesis. Although some tools exist for transgene misexpression in developing chick embryos, we have refined and advanced them by simplifying and optimizing constructs for spatiotemporal control. To maintain expression over the entire course of embryonic development we use an enhanced piggyBac transposon system that efficiently integrates sequences into the host genome. We also incorporate a DNA targeting sequence to direct plasmid translocation into the nucleus and a D4Z4 insulator sequence to prevent epigenetic silencing. We designed these constructs to minimize their size and maximize cellular uptake, and to simplify usage by placing all of the integrating sequences on a single plasmid. Following electroporation of stage HH8.5 embryos, our tetracycline-inducible promoter construct produces robust transgene expression in the presence of doxycycline at any point during embryonic development in ovo or in culture. Moreover, expression levels can be modulated by titrating doxycycline concentrations and spatial control can be achieved using beads or gels. Thus, we have generated a novel, sensitive, tunable, and stable inducible-promoter system for high-resolution gene manipulation in vivo.


1996 ◽  
Vol 16 (7) ◽  
pp. 3245-3254 ◽  
Author(s):  
V Ngô ◽  
D Gourdji ◽  
J N Laverrière

The methylation patterns of the rat prolactin (rPRL) (positions -440 to -20) and growth hormone (rGH) (positions -360 to -110) promoters were analyzed by bisulfite genomic sequencing. Two normal tissues, the anterior pituitary and the liver, and three rat pituitary GH3 cell lines that differ considerably in their abilities to express both genes were tested. High levels of rPRL gene expression were correlated with hypomethylation of the CpG dinucleotides located at positions -277 and -97, near or within positive cis-acting regulatory elements. For the nine CpG sites analyzed in the rGH promoter, an overall hypomethylation-expression coupling was also observed for the anterior pituitary, the liver, and two of the cell lines. The effect of DNA methylation was tested by measuring the transient expression of the chloramphenicol acetyltransferase reporter gene driven by a regionally methylated rPRL promoter. CpG methylation resulted in a decrease in the activity of the rPRL promoter which was proportional to the number of modified CpG sites. The extent of the inhibition was also found to be dependent on the position of methylated sites. Taken together, these data suggest that site-specific methylation may modulate the action of transcription factors that dictate the tissue-specific expression of the rPRL and rGH genes in vivo.


Sign in / Sign up

Export Citation Format

Share Document