scholarly journals Target Capture Sequencing of SARS-CoV-2 Genomes Using the ONETest Coronaviruses Plus

2021 ◽  
Author(s):  
Shing H. Zhan ◽  
Sepideh M. Alamouti ◽  
Brian S. Kwok ◽  
Meng-Hsun Lee ◽  
Jaswinder Khattra ◽  
...  

ABSTRACTBackgroundGenomic sequencing is important to track and monitor genetic changes in SARS-CoV-2. We introduce a target capture next-generation sequencing methodology, the ONETest Coronaviruses Plus, to sequence SARS-CoV-2 genomes and select genes of other respiratory viruses simultaneously.MethodsWe applied the ONETest on 70 respiratory samples (collected in Florida, USA between May and July, 2020), in which SARS-CoV-2 had been detected by a qualitative PCR assay. For 48 (69%) of the samples, we also applied the ARTIC protocol for Illumina sequencing. All the libraries were sequenced as 2×150 nucleotide reads on an Illumina instrument. The ONETest data were analyzed using an in-house pipeline and the ARTIC data using a published pipeline to produce consensus SARS-CoV-2 genome sequences, to which lineages were assigned using pangolin.ResultsOf the 70 ONETest libraries, 45 (64%) had a complete or near-complete SARS-CoV-2 genome sequence (> 29,000 bases and with > 90% of its bases covered by at least 10 reads). Of the 48 ARTIC libraries, 25 (52%) had a complete or near-complete SARS-CoV-2 genome sequence.In 24 out of 34 (71%) samples in which both the ONETest and ARTIC sequences were complete or near-complete and in which lineage could be assigned to both the ONETest and ARTIC sequences, the SARS-CoV-2 lineage identified was the same.ConclusionsThe ONETest can be used to sequence the SARS-CoV-2 genomes in archived samples and thereby enable detection of circulating and emerging SARS-CoV-2 variants. Target capture approaches, such as the ONETest, are less prone to loss of sequence coverage probably due to amplicon dropouts encountered in amplicon approaches, such as ARTIC. With its added value of characterizing other major respiratory pathogens, although not assessed in this study, the ONETest can help to better understand the epidemiology of infectious respiratory disease in the post COVID-19 era.

2020 ◽  
Author(s):  
Yating Tang ◽  
Jie Xu ◽  
Tianyu Zheng ◽  
Yi Lu

Abstract Background: To identify the underlying genetic defect responsible for microphthalmos eyes in two three-generation Chinese families.Methods: In our study, we screened 425 potential eye disease-related genes of the proband of a three-generation Chinese family diagnosed with microphthalmos using next-generation sequencing-based target capture sequencing. Variants were filtered and analyzed to identify possible disease-causing variants before Sanger sequencing validation.Results: We enrolled two families with microphthalmos (Family 1: microphthalmos with congenital ocular coloboma and Family 2: simple microphthalmos). Two novel heterozygous mutations, PXDN c.3165C>T (p.Pro1055Pro) and PXDN c.2640C>G (p.Arg880Arg), were found in Family 1, and CRYBB2 c.481G>A (p.Gly161Arg) was found in Family 2, but none of the mutations were found in the unaffected individuals, who were phenotypically normal. Multiple orthologous sequence alignment (MSA) revealed that the CRYBB2 p.Gly161Arg mutation was a deleterious effect mutation.Conclusions: The three novel mutations found in our study extend our current understanding of the genetic basis of microphthalmos and provide early presymptomatic diagnosis and emphasize the significance of genetic diagnosis of microphthalmos.


2017 ◽  
Vol 5 (33) ◽  
Author(s):  
J. L. Kennedy ◽  
J. C. Kincaid ◽  
K. C. Schwalm ◽  
A. N. Stoner ◽  
T. J. Abramo ◽  
...  

ABSTRACT Using target capture of viral nucleic acid and next-generation sequencing, we generated the genome sequences of three novel human parainfluenza virus 2 isolates. Isolates ACRI_0185 (GenBank accession number MF077311), ACRI_0230 (MF077312), and ACRI_0248 (MF077313) were collected in October 2016, February 2017, and March 2017, respectively, from pediatric patients with acute respiratory infection in Arkansas.


2007 ◽  
Vol 45 (11) ◽  
pp. 3498-3505 ◽  
Author(s):  
S. E. Letant ◽  
J. I. Ortiz ◽  
L. F. Bentley Tammero ◽  
J. M. Birch ◽  
R. W. Derlet ◽  
...  

2021 ◽  
Vol 10 (25) ◽  
Author(s):  
Masatoshi Tsukahara ◽  
Kotaro Ise ◽  
Maiko Nezuo ◽  
Haruna Azuma ◽  
Takeshi Akao ◽  
...  

We report here the draft genome sequence for Saccharomyces cerevisiae strain Awamori number 101, an industrial strain used for producing awamori, a distilled alcohol beverage. It was constructed by assembling the short reads obtained by next-generation sequencing. The 315 contigs constitute an 11.5-Mbp genome sequence coding 6,185 predicted proteins.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Keiko Shimojima Yamamoto ◽  
Taiju Utshigisawa ◽  
Hiromi Ogura ◽  
Takako Aoki ◽  
Takahiro Kawakami ◽  
...  

AbstractHereditary spherocytosis is the most frequent cause of hereditary hemolytic anemia and is classified into five subtypes (SPH1-5) according to OMIM. Because the clinical and laboratory features of patients with SPH1-5 are variable, it is difficult to classify these patients into the five subtypes based only on these features. We performed target capture sequencing in 51 patients with hemolytic anemia associated with/without morphological abnormalities in red blood cells. Thirteen variants were identified in five hereditary spherocytosis-related genes (six in ANK1 [SPH1]; four in SPTB [SPH2]; and one in each of SPTA1 [SPH3], SLC4A1 [SPH4], and EPB42 [SPH5]). Among these variants, seven were novel. The distribution pattern of the variants was different from that reported previously in Japan but similar to those reported in other Asian countries. Comprehensive genomic analysis would be useful and recommended, especially for patients without a detailed family history and those receiving frequent blood transfusions due to chronic hemolytic anemia.


2021 ◽  
Author(s):  
Jie Wang ◽  
Shiming Li ◽  
Lei Lan ◽  
Mushan Xie ◽  
Shu Cheng ◽  
...  

Abstract Background: Setaria italica is the second-most widely planted species of millets in the world and an important model grain crop for the research of C4 photosynthesis and abiotic stress tolerance. Through three genomes assembly and annotation efforts, all genomes were based on next generation sequencing technology, which limited the genome continuity. Results: Here we report a high-quality whole-genome of new cultivar Huagu11, using single-molecule real-time sequencing and High-throughput chromosome conformation capture (Hi-C) mapping technologies. The total assembly size of the Huagu11 genome was 408.37 Mb with a scaffold N50 size of 45.89 Mb. Compared with the other three reported millet genomes based on the next generation sequencing technology, the Huagu11 genome had the highest genomic continuity. Intraspecies comparison showed about 94.97% and 94.66% of the Yugu1 and Huagu11 genomes, respectively, were able to be aligned as one-to-one blocks with four chromosome inversion. The Huagu11 genome contained approximately 19.43 Mb Presence/absence Variation (PAV) with 627 protein-coding transcripts, while Yugu1 genomes had 20.53 Mb PAV sequences encoding 737 proteins. Overall, 969,596 Single-nucleotide polymorphism (SNPs) and 156,282 insertion-deletion (InDels) were identified between these two genomes. The genome comparison between Huagu11 and Yugu1 should reflect the genetic identity and variation between the cultivars of foxtail millet to a certain extent. The Ser-626-Aln substitution in acetohydroxy acid synthase (AHAS) was found to be relative to the imazethapyr tolerance in Huagu11. Conclusions: A new improved high-quality reference genome sequence of Setaria italica was assembled, and intraspecies genome comparison determined the genetic identity and variation between the cultivars of foxtail millet. Based on the genome sequence, it was found that the Ser-626-Aln substitution in AHAS was responsible for the imazethapyr tolerance in Huagu11. The new improved reference genome of Setaria italica will promote the genic and genomic studies of this species and be beneficial for cultivar improvement.


2021 ◽  
Vol 14 (2) ◽  
Author(s):  
James F. Amatruda

ABSTRACT In the treatment of children and adolescents with cancer, multimodal approaches combining surgery, chemotherapy and radiation can cure most patients, but may cause lifelong health problems in survivors. Current therapies only modestly reflect increased knowledge about the molecular mechanisms of these cancers. Advances in next-generation sequencing have provided unprecedented cataloging of genetic aberrations in tumors, but understanding how these genetic changes drive cellular transformation, and how they can be effectively targeted, will require multidisciplinary collaboration and preclinical models that are truly representative of the in vivo environment. Here, I discuss some of the key challenges in pediatric cancer from my perspective as a physician-scientist, and touch on some promising new approaches that have the potential to transform our understanding of these diseases.


2021 ◽  
Vol 10 (20) ◽  
Author(s):  
Colyn S. Grobler ◽  
Jessica Coertse ◽  
Wanda Markotter

ABSTRACT The genus Lyssavirus includes rabies virus as well as multiple diverse and recently described novel species. Using next-generation sequencing technologies, we have obtained the whole-genome sequence of Matlo bat lyssavirus, which was isolated from a Natal long-fingered bat (Miniopterus natalensis) in South Africa.


Sign in / Sign up

Export Citation Format

Share Document