scholarly journals Caspase-2 regulates S-phase cell cycle events to protect from DNA damage accumulation independent of apoptosis

2021 ◽  
Author(s):  
Ashley Boice ◽  
Raj Kumari Pandita ◽  
Karla Lopez ◽  
Melissa J Pourpak ◽  
Chloe I Charendoff ◽  
...  

In addition to its classical role in apoptosis, accumulating evidence suggests that caspase-2 has non-apoptotic functions, including regulation of cell division. Loss of caspase-2 is known to increase proliferation rates but how caspase-2 is regulating this process is currently unclear. We show that caspase-2 is activated in dividing cells in G1- and early S-phase. In the absence of caspase-2, cells exhibit numerous S-phase defects including delayed exit from S-phase, S-phase-associated chromosomal aberrations, and increased DNA damage following S-phase arrest. In addition, caspase-2-deficient cells have a higher frequency of stalled replication forks, decreased DNA fiber length, and impeded progression of DNA replication tracts. This indicates that caspase-2 reduces replication stress and promotes replication fork protection to maintain genomic stability. These functions are independent of the pro-apoptotic function of caspase-2 because blocking caspase-2-induced cell death had no effect on cell division or DNA damage-induced cell cycle arrest. Thus, our data supports a model where caspase-2 regulates cell cycle events to protect from the accumulation of DNA damage independently of its pro-apoptotic function.

1990 ◽  
Vol 10 (12) ◽  
pp. 6482-6490
Author(s):  
F R Cross

Null mutations in three genes encoding cyclin-like proteins (CLN1, CLN2, and CLN3) in Saccharomyces cerevisiae cause cell cycle arrest in G1 (cln arrest). In cln1 cln2 cln3 strains bearing plasmids containing the CLN3 (also called WHI1 or DAF1) coding sequence under the transcriptional control of a galactose-regulated promoter, shift from galactose to glucose medium (shutting off synthesis of CLN3 mRNA) allowed completion of cell cycles in progress but caused arrest in the ensuing unbudded G1 phase. Cell growth was not inhibited in arrested cells. Cell division occurred in glucose medium even if cells were arrested in S phase during the initial 2 h of glucose treatment, suggesting that CLN function may not be required in the cell cycle after S phase. However, when the coding sequence of the hyperactive C-terminal truncation allele CLN3-2 (formerly DAF1-1) was placed under GAL control, cells went through multiple cycles before arresting after a shift from galactose to glucose. These results suggest that the C terminus of the wild-type protein confers functional instability. cln-arrested cells are mating competent. However, cln arrest is distinct from constitutive activation of the mating-factor signalling pathway because cln-arrested cells were dependent on the addition of pheromone both for mating and for induction of an alpha-factor-induced transcript, FUS1, and because MATa/MAT alpha (pheromone-nonresponsive) strains were capable of cln arrest in G1 (although a residual capacity for cell division before arrest was observed in MATa/MAT alpha strains). These results are consistent with a specific CLN requirement for START transit.


1990 ◽  
Vol 10 (12) ◽  
pp. 6482-6490 ◽  
Author(s):  
F R Cross

Null mutations in three genes encoding cyclin-like proteins (CLN1, CLN2, and CLN3) in Saccharomyces cerevisiae cause cell cycle arrest in G1 (cln arrest). In cln1 cln2 cln3 strains bearing plasmids containing the CLN3 (also called WHI1 or DAF1) coding sequence under the transcriptional control of a galactose-regulated promoter, shift from galactose to glucose medium (shutting off synthesis of CLN3 mRNA) allowed completion of cell cycles in progress but caused arrest in the ensuing unbudded G1 phase. Cell growth was not inhibited in arrested cells. Cell division occurred in glucose medium even if cells were arrested in S phase during the initial 2 h of glucose treatment, suggesting that CLN function may not be required in the cell cycle after S phase. However, when the coding sequence of the hyperactive C-terminal truncation allele CLN3-2 (formerly DAF1-1) was placed under GAL control, cells went through multiple cycles before arresting after a shift from galactose to glucose. These results suggest that the C terminus of the wild-type protein confers functional instability. cln-arrested cells are mating competent. However, cln arrest is distinct from constitutive activation of the mating-factor signalling pathway because cln-arrested cells were dependent on the addition of pheromone both for mating and for induction of an alpha-factor-induced transcript, FUS1, and because MATa/MAT alpha (pheromone-nonresponsive) strains were capable of cln arrest in G1 (although a residual capacity for cell division before arrest was observed in MATa/MAT alpha strains). These results are consistent with a specific CLN requirement for START transit.


Oncogene ◽  
2021 ◽  
Author(s):  
Ashley G. Boice ◽  
Karla E. Lopez ◽  
Raj K. Pandita ◽  
Melissa J. Parsons ◽  
Chloe I. Charendoff ◽  
...  

2012 ◽  
Vol 33 (12) ◽  
pp. 1500-1505 ◽  
Author(s):  
Yu Sun ◽  
Shusheng Tang ◽  
Xi Jin ◽  
Chaoming Zhang ◽  
Wenxia Zhao ◽  
...  

2018 ◽  
Vol 70 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Artur Beberok ◽  
Dorota Wrześniok ◽  
Aldona Minecka ◽  
Jakub Rok ◽  
Marcin Delijewski ◽  
...  

Metallomics ◽  
2014 ◽  
Vol 6 (5) ◽  
pp. 1014 ◽  
Author(s):  
Sabine H. van Rijt ◽  
Isolda Romero-Canelón ◽  
Ying Fu ◽  
Steve D. Shnyder ◽  
Peter J. Sadler

2004 ◽  
Vol 134 (11) ◽  
pp. 3121-3126 ◽  
Author(s):  
James M. Visanji ◽  
Susan J. Duthie ◽  
Lynn Pirie ◽  
David G. Thompson ◽  
Philip J. Padfield

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e15059-e15059
Author(s):  
Mark G. Frattini ◽  
Lucia Regales ◽  
Ruth Santos ◽  
Diana Carrillo

e15059 Background: Pancreatic cancer is the fourth leading cause of cancer death in the USA. In 2012, 43,920 people will be diagnosed and 37,390 people will die of this disease. 95% of tumors reveal loss of the p16 protein, a regulator of the G1 to S phase transition. Cdc7 is a conserved kinase required for the initiation of DNA replication, is a target of the S-phase checkpoint, and has a role in controlling the DNA damage response. Downregulation of Cdc7 kinase activity resulted in slowing of S-phase and cell cycle arrest followed by accumulation of DNA damage. Cdc7 has been shown to be over-expressed in many different tumors including the majority of solid and liquid tumors. In our laboratory a novel natural product small molecule inhibitor (MSK-777) has been identified, developed and shown to be efficacious in cell based cytotoxicity assays and multiple animal models of cancer. Methods: We have examined the efficacy of Cdc7 kinase inhibition as a therapeutic approach for pancreatic cancer by examining the sensitivity of MSK-777 in Capan-1, BxPC3, and PANC-1 cell lines. These cells were treated with MSK-777, control (DMSO), or hydroxyurea and collected for viable cell counts, fluorescence-activated cell sorting (FACS), and western blotting. Results: Cell viability analyses revealed that MSK-777 had a dramatic effect after 24 hours, reducing cell viability to less then 20% in BxPC3 cells. FACS results demonstrated that MSK-777 exposure resulted in cell cycle arrest at G1/S in Capan-1 and PANC-1 cells by 48 hours while BxPC3 cells showed a significant sub-G1 population by 24 hours, indicating apoptotic cell death. Western blotting showed that in BxPC3 cells phosphorylation of the mini-chromosome maintenance 2 protein (Mcm2) disappeared by 24 hours, indicating inactivation of the helicase that unwinds the strands of DNA during replication. Western blots of Capan-1 and PANC-1 cells showed lower levels of phosphorylated Mcm2 by 48 hours. Conclusions: We are currently examining the efficacy of MSK-777 in mouse models of orthotopically injected pancreatic cancer cells. Based on these collective results, inhibition of Cdc7 kinase activity with MSK-777 represents a novel and promising therapy for this deadly disease.


Sign in / Sign up

Export Citation Format

Share Document