scholarly journals Effective Therapy Targeting Cytochrome bc1 Prevents Babesia Erythrocytic Development and Protects from Lethal Infection

2021 ◽  
Author(s):  
Joy E. Chiu ◽  
Isaline Renard ◽  
Anasuya C. Pal ◽  
Pallavi Singh ◽  
Pratap Vydyam ◽  
...  

AbstractTargeting conserved metabolic processes that are essential for viability of pathogens, such as Plasmodium and Babesia that cause blood-borne diseases, is an effective strategy to eliminate malaria and babesiosis infections with no recrudescence. One interesting target is the mitochondrial cytochrome bc1 complex, which could be inhibited by drugs such as endochin-like quinolones (ELQ) and atovaquone. We used the tick-transmitted and culturable blood-borne pathogen Babesia duncani to evaluate the structure-activity relationship, safety, efficacy and mode of action of ELQs. We identified a potent and highly selective ELQ prodrug (ELQ-502), which alone or in combination with atovaquone eliminates B. microti and B. duncani infections in vitro and in mouse models of parasitemia and lethal infection. The strong efficacy at low dose, excellent safety, bioavailability and long half-life of this experimental therapy makes it an ideal clinical candidate for the treatment of human infections caused by Babesia and its closely related apicomplexan parasites.

Author(s):  
Joy E. Chiu ◽  
Isaline Renard ◽  
Anasuya C. Pal ◽  
Pallavi Singh ◽  
Pratap Vydyam ◽  
...  

An effective strategy to control blood-borne diseases and prevent outbreak recrudescence involves targeting conserved metabolic processes that are essential for pathogen viability. One such target for Plasmodium and Babesia, the infectious agents of malaria and babesiosis, respectively, is the mitochondrial cytochrome bc 1 protein complex, which can be inhibited by endochin-like quinolones (ELQ) and atovaquone. We used the tick-transmitted and culturable blood-borne pathogen Babesia duncani to evaluate the structure-activity relationship, safety, efficacy and mode of action of ELQs. We identified a potent and highly selective ELQ prodrug (ELQ-502), which, alone, or in combination with atovaquone, eliminates B. microti and B. duncani infections in vitro and in mouse models of parasitemia and lethal infection. The strong efficacy at low dose, excellent safety, bioavailability and long half-life of this experimental therapy makes it an ideal clinical candidate for the treatment of human infections caused by Babesia and its closely related apicomplexan parasites.


1986 ◽  
Vol 113 (1_Suppl) ◽  
pp. S120-S121
Author(s):  
TH. LINN ◽  
H. GERMANN ◽  
B. HERING ◽  
R. BRETZEL ◽  
K. FEDERLIN

2019 ◽  
Vol 26 (7) ◽  
pp. 512-522
Author(s):  
Xian Li ◽  
Long Xia ◽  
Xiaohui Ouyang ◽  
Qimuge Suyila ◽  
Liya Su ◽  
...  

<P>Background: Despite new agent development and short-term benefits in patients with Colorectal Cancer (CRC), metastatic CRC cure rates have not improved due to high rates of oxaliplatin resistance and toxicity. There is an urgent need for effective tools to prevent and treat CRC and reduce morbidity and mortality of CRC patients. Exploring the effects of bioactive peptides on the antitumor to CRC was of vital importance to the clinical application. </P><P> Objective: This study aimed to investigate the therapeutic impact of Anticancer Bioactive Peptides (ACBP) on anticancer effect of oxaliplatin (LOHP) in human colorectal cancer xenografts models in nude mice. </P><P> Methods: HCT-116 cells were cultured in vitro via CCK-8 assays and the absorbance was measured at 450 nm. Apoptosis and cell cycle were assessed by Flow Cytometry (FCM) in vitro. HCT-116 human colorectal cancer cells inoculated subcutaneously in nude mice of treatment with PBS (GG), ACBP, LOHP, ACBP+LOHP (A+L) in vivo. The quality of life was assessed by dietary amount of nude mice, the weight of nude mice, inhibition rates, tumor weight and tumor volume. Immunohistochemistry and RT-qPCR method was conducted to determine the levels of apoptosisregulating proteins/genes in transplanted tumors. </P><P> Results: ACBP induced substantial reductions in viable cell numbers and apoptosis of HCT116 cells in combined with LOHP in vitro. Compared with the control GG group, ACBP combined low dose oxaliplatin (U) group demonstrated significantly different tumor volume, the rate of apoptosis, the expression levels of Cyt-C, caspase-3,8,9 proteins and corresponding RNAs (P<0.05). The expression of pro-apoptotic proteins in the cytoplasm around the nucleus was significantly enhanced by ACBP. Short term intermittent use of ACBP alone indicted a certain inhibitory effect on tumor growth, and improve the quality of life of tumor bearing nude mice. </P><P> Conclusion: ACBP significantly increased the anti-cancer responses of low dose oxaliplatin (L-LOHP), thus, significantly improving the quality of life of tumor-bearing nude mice.</P>


2020 ◽  
Vol 27 (1) ◽  
pp. 54-77 ◽  
Author(s):  
Bogdan Bumbăcilă ◽  
Mihai V. Putz

Pesticides are used today on a planetary-wide scale. The rising need for substances with this biological activity due to an increasing consumption of agricultural and animal products and to the development of urban areas makes the chemical industry to constantly investigate new molecules or to improve the physicochemical characteristics, increase the biological activities and improve the toxicity profiles of the already known ones. Molecular databases are increasingly accessible for in vitro and in vivo bioavailability studies. In this context, structure-activity studies, by their in silico - in cerebro methods, are used to precede in vitro and in vivo studies in plants and experimental animals because they can indicate trends by statistical methods or biological activity models expressed as mathematical equations or graphical correlations, so a direction of study can be developed or another can be abandoned, saving financial resources, time and laboratory animals. Following this line of research the present paper reviews the Structure-Activity Relationship (SAR) studies and proposes a correlation between a topological connectivity index and the biological activity or toxicity made as a result of a study performed on 11 molecules of organophosphate compounds, randomly chosen, with a basic structure including a Phosphorus atom double bounded to an Oxygen atom or to a Sulfur one and having three other simple covalent bonds with two alkoxy (-methoxy or -ethoxy) groups and to another functional group different from the alkoxy groups. The molecules were packed on a cubic structure consisting of three adjacent cubes, respecting a principle of topological efficiency, that of occupying a minimal space in that cubic structure, a method that was called the Clef Method. The central topological index selected for correlation was the Wiener index, since it was possible this way to discuss different adjacencies between the nodes in the graphs corresponding to the organophosphate compounds molecules packed on the cubic structure; accordingly, &quot;three dimensional&quot; variants of these connectivity indices could be considered and further used for studying the qualitative-quantitative relationships for the specific molecule-enzyme interaction complexes, including correlation between the Wiener weights (nodal specific contributions to the total Wiener index of the molecular graph) and the biochemical reactivity of some of the atoms. Finally, when passing from SAR to Q(uantitative)-SAR studies, especially by the present advanced method of the cubic molecule (Clef Method) and its good assessment of the (neuro)toxicity of the studied molecules and of their inhibitory effect on the target enzyme - acetylcholinesterase, it can be seen that a predictability of the toxicity and activity of different analogue compounds can be ensured, facilitating the in vivo experiments or improving the usage of pesticides.


Author(s):  
Agnieszka Wróbel ◽  
Danuta Drozdowska

Background: Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances on the research of new DHFR inhibitors with potential anticancer activity. Methods: The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationship were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. <p> Results: This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searching for over eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. <p> Conclusion: Thorough physicochemical characterization and biological investigations it is possible to understand structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.


2019 ◽  
Vol 16 (10) ◽  
pp. 807-817 ◽  
Author(s):  
Shilpy Aggarwal ◽  
Deepika Paliwal ◽  
Dhirender Kaushik ◽  
Girish Kumar Gupta ◽  
Ajay Kumar

The synthesis of a novel series of 1,3,5-trisubstitiuted pyrazoline was achieved by refluxing chalcone derivative with different heteroaryl hydrazines. The newly synthesized compounds were characterized by 1H NMR, 13CNMR, mass spectral and elemental analysis data. The synthetic series of novel pyrazoline hybrids was screened for in vitro schizont maturation assay against chloroquine sensitive 3D7 strain of Plasmodium falciparum. Most of the compounds showed promising in vitro antimalarial activity against CQ sensitive strain. The preliminary structure-activity relationship study showed that quinoline substituted analog at position N-1 showed maximum activity followed by benzothiazole substitution, while phenyl substitution lowers the antimalarial activity. The observed activity was persistent by the docking study on P. falciparum cystein protease falcipain-2. The pharmacokinetic properties were also studied using ADME prediction.


Sign in / Sign up

Export Citation Format

Share Document