scholarly journals An open source statistical and data processing toolbox for wide-field optical imaging in mice

2021 ◽  
Author(s):  
Lindsey M Brier ◽  
Joseph P Culver

Wide-field optical imaging (WOI) produces concurrent hemodynamic and cell-specific calcium recordings across the entire cerebral cortex. There have been multiple studies using WOI to image mouse models with various environmental or genetic manipulations to understand various diseases. Despite the obvious utility of pursuing mouse WOI alongside human functional magnetic resonance imaging (fMRI), and the multitude of analysis toolboxes in the fMRI literature, there is not an available open-source, user-friendly data processing and statistical analysis toolbox for WOI data. Here, we present our MATLAB toolbox for pre-processing WOI data, as described and adapted to combine processing techniques from multiple WOI groups. Additionally, we provide multiple data analysis packages and translate two commonly used statistical approaches from the fMRI literature to the WOI data. To illustrate the utility, we demonstrate the ability of the processing and analysis framework to detect a well-established deficit in a mouse model of stroke. Additionally, we evaluate resting state data in healthy mice.

Author(s):  
R. K. D. Aranas ◽  
B. J. D. Jiao ◽  
B. J. P. Magallon ◽  
M. K. F. Ramos ◽  
J. A. Amado ◽  
...  

The Philippines’s PHL-Microsat program aims to launch its first earth observation satellite, DIWATA, on the first quarter of 2016. DIWATA’s payload consists of a high-precision telescope (HPT), spaceborne multispectral imager (SMI) with liquid crystal tunable filter (LCTF), and a wide field camera (WFC). Once launched, it will provide information about the Philippines, both for disaster and environmental applications. Depending on the need, different remote sensing products will be generated from the microsatellite sensors. This necessitates data processing capability on the ground control segment. Rather than rely on commercial turnkey solutions, the PHL-Microsat team, specifically Project 3:DPAD, opted to design its own ground receiving station data subsystems. This paper describes the design of the data subsystems of the ground receiving station (GRS) for DIWATA. The data subsystems include: data processing subsystem for automatic calibration and georeferencing of raw images as well as the generation of higher level processed data products; data archiving subsystem for storage and backups of both raw and processed data products; and data distribution subsystem for providing a web-based interface and product download facility for the user community. The design covers the conceptual design of the abovementioned subsystems, the free and open source software (FOSS) packages used to implement them, and the challenges encountered in adapting the existing FOSS packages to DIWATA GRS requirements.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 397
Author(s):  
Boyoung Kim

To investigate the cellular structure, biomedical researchers often obtain three-dimensional images by combining two-dimensional images taken along the z axis. However, these images are blurry in all directions due to diffraction limitations. This blur becomes more severe when focusing further inside the specimen as photons in deeper focus must traverse a longer distance within the specimen. This type of blur is called depth-variance. Moreover, due to lens imperfection, the blur has asymmetric shape. Most deconvolution solutions for removing blur assume depth-invariant or x-y symmetric blur, and presently, there is no open-source for depth-variant asymmetric deconvolution. In addition, existing datasets for deconvolution microscopy also assume invariant or x-y symmetric blur, which are insufficient to reflect actual imaging conditions. DVDeconv, that is a set of MATLAB functions with a user-friendly graphical interface, has been developed to address depth-variant asymmetric blur. DVDeconv includes dataset, depth-variant asymmetric point spread function generator, and deconvolution algorithms. Experimental results using DVDeconv reveal that depth-variant asymmetric deconvolution using DVDeconv removes blurs accurately. Furthermore, the dataset in DVDeconv constructed can be used to evaluate the performance of microscopy deconvolution to be developed in the future.


Sign in / Sign up

Export Citation Format

Share Document