scholarly journals Berberine as siderophore from Talaromyces trachyspermus: augmentation and characterization”.

2021 ◽  
Author(s):  
Sharda Sahu ◽  
ANIL Prakash

In the present study, a siderophore compound produced by an endophytic fungus, Talaromyces trachyspermus was optimized for maximum production, 88.9 % SU by applying Plackett-Burman design and Response Surface Methodology through Central Composite Design that showed the succinic acid (1.141 g/L), sucrose (31.028 g/L) and temperature (27.475 ºC) as significant factors. On scale up, a further increase in siderophore yield was obtained (by 3%) The compound was extracted, purified and detected chemically as catecholate siderophore showing max. λ absorbance at 279nm. Contained of hydroxy benzene as shown by GC-MS analysis and further identified as berberine by HRLC-MS studies. The compound berberine is clinically a very important drug with several ethnobotanical properties. This is rare to report fungal catecholate and first to report the production of berberine from Talaromyces species .In the present study, a siderophore compound produced by an endophytic fungus, Talaromyces trachyspermus was optimized for maximum production, 88.9 % SU by applying Plackett-Burman design and Response Surface Methodology through Central Composite Design that showed the succinic acid (1.141 g/L), sucrose (31.028 g/L) and temperature (27.475 ºC) as significant factors. On scale up, a further increase in siderophore yield was obtained (by 3%) The compound was extracted, purified and detected chemically as catecholate siderophore showing max. λ absorbance at 279nm. Contained of hydroxy benzene as shown by GC-MS analysis and further identified as berberine by HRLC-MS studies. The compound berberine is clinically a very important drug with several ethnobotanical properties. This is rare to report fungal catecholate and first to report the production of berberine from Talaromyces species .

2020 ◽  
Vol 32 (6) ◽  
pp. 486-495 ◽  
Author(s):  
Tengku Athirrah Tengku-Mazuki ◽  
Kavilasni Subramaniam ◽  
Nur Nadhirah Zakaria ◽  
Peter Convey ◽  
Khalilah Abdul Khalil ◽  
...  

AbstractThis study focused on the ability of the Antarctic bacterium Rhodococcus sp. strain AQ5-14 to survive exposure to and to degrade high concentrations of phenol at 0.5 g l-1. After initial evaluation of phenol-degrading performance, the effects of salinity, pH and temperature on the rate of phenol degradation were examined. The optimum conditions for phenol degradation were pH 7 and 0.4 g l-1 NaCl at a temperature of 25°C (83.90%). An analysis using response surface methodology (RSM) and the Plackett-Burman design identified salinity, pH and temperature as three statistically significant factors influencing phenol degradation. The maximum bacterial growth was observed (optical density at 600 nm = 0.455), with medium conditions of pH 6.5, 22.5°C and 0.47 g l-1 NaCl in the central composite design of the RSM experiments enhancing phenol degradation to 99.10%. A central composite design was then used to examine the interactions among these three variables and to determine their optimal levels. There was excellent agreement (R2 = 0.9785) between experimental and predicted values, with less strong but still good agreement (R2 = 0.8376) between the predicted model values and those obtained experimentally under optimized conditions. Rhodococcus sp. strain AQ5-14 has excellent potential for the bioremediation of phenol.


2013 ◽  
Vol 647 ◽  
pp. 456-461 ◽  
Author(s):  
Rui Jiang ◽  
Li Wei Sun ◽  
Yu Zhao ◽  
Kai Feng ◽  
Shou Yan Chen

In this study, we used plackett-burman design (PBD) and response surface methodology (RSM) methods to optimize media and culture conditions for expression of recombinant human basic fibroblast growth factor (rhbFGF) in Pichia pastoris in order to effectively enhance the production of rhbFGF. PBD was used to screen the most significant factors from nine important factors, which were fermentation time, methanol, temperature, initial pH, OD600 for inducement, concentrated volume, YNB peptone, and casein. Then RSM was further used to optimize the significant parameters. Our results had shown that three significant factors selected by PBD were temperature, fermentation time, and methanol. Base on the 3-factor-3-level central composite design (CCD) of RSM, the final optimized conditions were fermentation time 126.7h, methanol 1.3%, temperature 21.3°C, initial pH 6.0±0.1, OD600 for inducement 26, concentrated volume 100 ml, YNB 13.4%, peptone 4%, and casein 0.1%. The maximum production of rhbFGF was 302.4mg/L, which was 2 times higher than the production of rhbFGF reported in the previous studies. Those results provided the foundation for further researches on higher density cultivation condition of rhbFGF explored in the fermenter and accelerate the industrialization development of rhbFGF.


Author(s):  
Syamdidi Syamdidi ◽  
Diah Ikasari ◽  
Hasta Octavini

Research on processing of crispy baby tilapia (Oreochromis niloticus) was conducted to obtain type and proportion of flour on this product with central composite design method. This research used 6 types of flour, namely wheat flour, rice flour, potato flour, tapioca flour, corn flour and baking powder. Baby tilapia used for this research were 30-40 day old, 2-3 cm long. Parameters observed were sensory (appearance, odor, taste, texture, overall acceptance) and crispness for the physical parameter. The results showed that only two out of six variables gave big effect on the tested response i.e potato and rice flour. Those two variables were then optimized with central composite design method to obtain the best product. The optimization process demonstrated that the optimum amount of potato and rice flour were 58-60 g (22.16-22.92%) and 40-60 g (15.28-22.92%), respectively.


2017 ◽  
Vol 42 (3) ◽  
Author(s):  
Ramesh Bandikari ◽  
Umamahesh Katike ◽  
Naga Sivudu Seelam ◽  
Vijaya Sarathi Reddy Obulam

AbstractAimEvaluation of the medium components and conditions for the optimization of xylanase production in submerged fermentation byMethodswas identified by the 18s rRNA. NaOH pre-treated corn cobs were used in order to reduce the crystallinity of corn cobs. De-oiled cakes proximate composition was analyzed according to AOAC. Plackett-Burman design (PBD) was used to screen the 19 media variables that affect xylanase production and optimized the media by central composite design (CCD).ResultsThe isolate was identified asConclusionNaOH pre-treated corn cobs were used with mustard cake powder as fermentation medium constituent to induce the xylanase production. From the results we conclude that mustard cake induced the xylanase production.


2020 ◽  
Author(s):  
Hamid shahbaz mohammadi ◽  
Abbas Najjari ◽  
Eskandar Omidinia

Abstract The enzyme urate oxidase (UOX) is used as a drug for preventing and treatment of chemotherapy-induced hyperuricemia. This study deals with the statistical optimization of lactose inducible fermentation for production of soluble recombinant Aspergillus flavus UOX. 10 variables were investigated by Plackett–Burman design (PBD), and the most significant factors were further optimized by central composite design (CCD). PBD results indicated that glycerol, yeast extract, tryptone, and lactose affected UOX activity significantly. The CCD results showed that the maximum enzyme activity (19.34 U/ml) could be achieved under the optimum conditions of glycerol 0.87 g/L, yeast extract 9.11 g/L, tryptone 10.29 g/L, K2HPO4 1.81 g/L, and lactose 12.79 g/L. When the same induction strategy was tested at shake flask, 19.34 U/mL of UOX activity was obtained, which was 12.5 folds higher than IPTG induction protocol. Furthermore, the lower total cost (0.7 vs. 13.5 €) was additionally feature that confirmed the suitability of the lactose induction method. Collectively, our results showed that design of experiment methodology can be applied as a suitable tool for improved production of UOX using lactose as the inducer.


Sign in / Sign up

Export Citation Format

Share Document