scholarly journals Does cellular adaptation to force loading rate determine the biphasic vs monotonic response of actin retrograde flow with substrate rigidity?

2021 ◽  
Author(s):  
Partho Sakha De ◽  
Rumi De

AbstractThe transmission of cytoskeletal forces to the extracellular matrix through focal adhesion complexes is essential for a multitude of biological processes such as cell migration, differentiation, tissue development, cancer progression, among others. During migration, focal adhesions arrest the actin retrograde flow towards the cell interior, allowing the cell front to move forward. Here, we address a puzzling observation of the existence of two distinct phenomena: a biphasic relationship of the retrograde flow and cell traction force with increasing substrate rigidity, with maximum traction force and minimum retrograde flow velocity being present at an optimal substrate stiffness; in contrast, a monotonic relationship between them where the retrograde flow decreases and traction force increases with substrate stiffness. We propose a theoretical model for cell-matrix adhesions at the leading edge of a migrating cell, incorporating a novel approach in force loading rate sensitive binding and reinforcement of focal adhesions assembly and the subsequent force-induced slowing down of actin flow. Our model unravels both biphasic and monotonic responses of the retrograde flow and cell traction force with increasing substrate rigidity, owing to the cell’s ability to sense and adapt to the fast-growing forces. Moreover, we also elucidate how the viscoelastic properties of the substrate regulate these nonlinear responses and alter cellular behaviours.

2019 ◽  
Author(s):  
Partho Sakha De ◽  
Rumi De

Stick-slip motion, a common phenomenon observed during crawling of cells, is found to be strongly sensitive to the substrate stiffness. Stick-slip behaviours have previously been investigated typically using purely elastic substrates. For a more realistic understanding of this phenomenon, we propose a theoretical model to study the dynamics on a viscoelastic substrate. Our model based on a reaction-diffusion framework, incorporates known important interactions such as retrograde flow of actin, myosin contractility, force dependent assembly and disassembly of focal adhesions coupled with cell-substrate interaction. We show that consideration of a viscoelastic substrate not only captures the usually observed stick-slip jumps, but also predicts the existence of an optimal substrate viscosity corresponding to maximum traction force and minimum retrograde flow which was hitherto unexplored. Moreover, our theory predicts the time evolution of individual bond force that characterizes the stick-slip patterns on soft versus stiff substrates. Our analysis also elucidates how the duration of the stick-slip cycles are affected by various cellular parameters.


2011 ◽  
Vol 409 ◽  
pp. 105-110 ◽  
Author(s):  
Francesca Boccafoschi ◽  
Marco Rasponi ◽  
Cecilia Mosca ◽  
Erica Bocchi ◽  
Simone Vesentini

It is well-known that cellular behavior can be guided by chemical signals and physical interactions at the cell-substrate interface. The patterns that cells encounter in their natural environment include nanometer-to-micrometer-sized topographies comprising extracellular matrix, proteins, and adjacent cells. Whether cells transduce substrate rigidity at the microscopic scale (for example, sensing the rigidity between adhesion sites) or the nanoscopic scale remains an open question. Here we report that micromolded elastomeric micropost arrays can decouple substrate rigidity from adhesive and surface properties. Arrays of poly (dimethylsiloxane) (PDMS) microposts from microfabricated silicon masters have been fabricated. To control substrate rigidity they present the same post heights but different surface area and spacing between posts. The main advantage of micropost arrays over other surface modification solutions (i.e. hydrogels) is that measured subcellular traction forces could be attributed directly to focal adhesions. This would allow to map traction forces to individual focal adhesions and spatially quantify subcellular distributions of focal-adhesion area, traction force and focal-adhesion stress. Moreover, different adhesion intracellular pathways could be used by the cells to differentiate toward a proliferative or a contractile cellular phenotype, for instance. This particular application is advantageous for vascular tissue engineering applications, where mimicking as close as possible the vessels dynamics should be a step forward in this research field.


Cytoskeleton ◽  
2021 ◽  
Author(s):  
Minh‐Tri Ho Thanh ◽  
Allie Grella ◽  
Denis Kole ◽  
Sakthikumar Ambady ◽  
Qi Wen

2008 ◽  
Vol 183 (6) ◽  
pp. 999-1005 ◽  
Author(s):  
Margaret L. Gardel ◽  
Benedikt Sabass ◽  
Lin Ji ◽  
Gaudenz Danuser ◽  
Ulrich S. Schwarz ◽  
...  

How focal adhesions (FAs) convert retrograde filamentous actin (F-actin) flow into traction stress on the extracellular matrix to drive cell migration is unknown. Using combined traction force and fluorescent speckle microscopy, we observed a robust biphasic relationship between F-actin speed and traction force. F-actin speed is inversely related to traction stress near the cell edge where FAs are formed and F-actin motion is rapid. In contrast, larger FAs where the F-actin speed is low are marked by a direct relationship between F-actin speed and traction stress. We found that the biphasic switch is determined by a threshold F-actin speed of 8–10 nm/s, independent of changes in FA protein density, age, stress magnitude, assembly/disassembly status, or subcellular position induced by pleiotropic perturbations to Rho family guanosine triphosphatase signaling and myosin II activity. Thus, F-actin speed is a fundamental regulator of traction force at FAs during cell migration.


2017 ◽  
Vol 28 (14) ◽  
pp. 1901-1911 ◽  
Author(s):  
Dennis W. Zhou ◽  
Ted T. Lee ◽  
Shinuo Weng ◽  
Jianping Fu ◽  
Andrés J. García

Focal adhesions (FAs) regulate force transfer between the cytoskeleton and ECM–integrin complexes. We previously showed that vinculin regulates force transmission at FAs. Vinculin residence time in FAs correlated with applied force, supporting a mechanosensitive model in which forces stabilize vinculin’s active conformation to promote force transfer. In the present study, we examined the relationship between traction force and vinculin–paxillin localization to single FAs in the context of substrate stiffness and actomyosin contractility. We found that vinculin and paxillin FA area did not correlate with traction force magnitudes at single FAs, and this was consistent across different ECM stiffness and cytoskeletal tension states. However, vinculin residence time at FAs varied linearly with applied force for stiff substrates, and this was disrupted on soft substrates and after contractility inhibition. In contrast, paxillin residence time at FAs was independent of local applied force and substrate stiffness. Paxillin recruitment and residence time at FAs, however, were dependent on cytoskeletal contractility on lower substrate stiffness values. Finally, substrate stiffness and cytoskeletal contractility regulated whether vinculin and paxillin turnover dynamics are correlated to each other at single FAs. This analysis sheds new insights on the coupling among force, substrate stiffness, and FA dynamics.


Author(s):  
Sangyoon J. Han ◽  
Nathan J. Sniadecki

Cells rely on traction forces in order to crawl across a substrate. These traction forces come from dynamic changes in focal adhesions, cytoskeletal structures, and chemical and mechanical signals from the extracellular matrix. Several computational models have been developed that help explain the trajectory or accumulation of cells during migration, but little attention has been placed on traction forces during this process. Here, we investigated the spatial and temporal dynamics of traction forces by using a multiphysics model that describes the cycle of steps for a migrating cell on an array of posts. The migration cycle includes extension of the leading edge, formation of new adhesions at the front, contraction of the cytoskeleton, and the release of adhesions at the rear. In the model, an activation signal triggers the assembly of actin and myosin into a stress fiber, which generates a cytoskeletal tension in a manner similar to Hill’s muscle model. In addition, the role that adhesion dynamics has in regulating cytoskeletal tension has been added to the model. The multiphysics model was simulated in Matlab for 1-D simulations, and in Comsol for 2-D simulations. The model was able to predict the spatial distribution of traction forces observed with previous experiments in which large forces were seen at the leading and trailing edges. The large traction force at the trailing edge during the extension phase likely contributes to detachment of the focal adhesion by overcoming its adhesion strength with the post. Moreover, the model found that the mechanical work of a migrating cell underwent a cyclic relationship that rose with the formation of a new adhesion and fell with the release of an adhesion at its rear. We applied a third activation signal at the time of release and found it helped to maintain a more consistent level of work during migration. Therefore, the results from both our 1-D and 2-D migration simulations strongly suggest that cells use biochemical activation to supplement the loss in cytoskeletal tension upon adhesion release.


2018 ◽  
Vol 115 (6) ◽  
pp. 1192-1197 ◽  
Author(s):  
Mark Bennett ◽  
Marco Cantini ◽  
Julien Reboud ◽  
Jonathan M. Cooper ◽  
Pere Roca-Cusachs ◽  
...  

Cell response to matrix rigidity has been explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. Here the molecular clutch model is extended to account for cell interactions with purely viscous surfaces (i.e., without an elastic component). Supported lipid bilayers present an idealized and controllable system through which to study this concept. Using lipids of different diffusion coefficients, the mobility (i.e., surface viscosity) of the presented ligands (in this case RGD) was altered by an order of magnitude. Cell size and cytoskeletal organization were proportional to viscosity. Furthermore, there was a higher number of focal adhesions and a higher phosphorylation of FAK on less-mobile (more-viscous) surfaces. Actin retrograde flow, an indicator of the force exerted on surfaces, was also seen to be faster on more mobile surfaces. This has consequential effects on downstream molecules; the mechanosensitive YAP protein localized to the nucleus more on less-mobile (more-viscous) surfaces and differentiation of myoblast cells was enhanced on higher viscosity. This behavior was explained within the framework of the molecular clutch model, with lower viscosity leading to a low force loading rate, preventing the exposure of mechanosensitive proteins, and with a higher viscosity causing a higher force loading rate exposing these sites, activating downstream pathways. Consequently, the understanding of how viscosity (regardless of matrix stiffness) influences cell response adds a further tool to engineer materials that control cell behavior.


2016 ◽  
Author(s):  
Vinay Swaminathan ◽  
Joseph Mathew Kalappurakkal ◽  
Shalin B. Mehta ◽  
Pontus Nordenfelt ◽  
Travis I. Moore ◽  
...  

Integrins are transmembrane receptors that, upon activation, bind extracellular matrix (ECM) or cell surface ligands and link them to the actin cytoskeleton to mediate cell adhesion and migration1,2. One model for the structural transitions mediating integrin activation termed “the cytoskeletal force hypothesis” posits that force transmitted from the cytoskeleton to ligand-bound integrins acts as an allosteric stabilizer of the extended-open, high-affinity state3. Since cytoskeletal forces in migrating cells are generated by centripetal “retrograde flow” of F-actin from the cell leading edge, where integrin-based adhesions are initiated4,5, this model predicts that F-actin flow should align and orient activated, ligand-bound integrins in integrin-based adhesions. Here, polarization-sensitive fluorescence microscopy of GFP-αVβ3 integrin chimeras in migrating fibroblasts shows that integrins are aligned with respect to the axis of FAs and the direction of F-actin flow, and this alignment requires binding immobilized ligand and talin-mediated linkage to a flowing cytoskeleton. Polarization imaging and Rosetta modelling of chimeras engineered to orient GFP differentially with respect to the integrin headpiece suggest that ligand-bound αVβ3 integrin may be markedly tilted by the force of F-actin flow. These results show that actin cytoskeletal forces actively sculpt an anisotropic molecular scaffold in FAs that may underlie the ability of cells to sense directional ECM and physical cues.


Author(s):  
Ai Kia Yip ◽  
Songjing Zhang ◽  
Lor Huai Chong ◽  
Elsie Cheruba ◽  
Jessie Yong Xing Woon ◽  
...  

Focal adhesions (FAs) are specialized structures that enable cells to sense their extracellular matrix rigidity and transmit these signals to the interior of the cells, bringing about actin cytoskeleton reorganization, FA maturation, and cell migration. It is known that cells migrate towards regions of higher substrate rigidity, a phenomenon known as durotaxis. However, the underlying molecular mechanism of durotaxis and how different proteins in the FA are involved remain unclear. Zyxin is a component of the FA that has been implicated in connecting the actin cytoskeleton to the FA. We have found that knocking down zyxin impaired NIH3T3 fibroblast’s ability to sense and respond to changes in extracellular matrix in terms of their FA sizes, cell traction stress magnitudes and F-actin organization. Cell migration speed of zyxin knockdown fibroblasts was also independent of the underlying substrate rigidity, unlike wild type fibroblasts which migrated fastest at an intermediate substrate rigidity of 14 kPa. Wild type fibroblasts exhibited durotaxis by migrating toward regions of increasing substrate rigidity on polyacrylamide gels with substrate rigidity gradient, while zyxin knockdown fibroblasts did not exhibit durotaxis. Therefore, we propose zyxin as an essential protein that is required for rigidity sensing and durotaxis through modulating FA sizes, cell traction stress and F-actin organization.


2021 ◽  
Vol 17 (10) ◽  
pp. e1009506
Author(s):  
David M. Rutkowski ◽  
Dimitrios Vavylonis

Mechanical forces, actin filament turnover, and adhesion to the extracellular environment regulate lamellipodial protrusions. Computational and mathematical models at the continuum level have been used to investigate the molecular clutch mechanism, calculating the stress profile through the lamellipodium and around focal adhesions. However, the forces and deformations of individual actin filaments have not been considered while interactions between actin networks and actin bundles is not easily accounted with such methods. We develop a filament-level model of a lamellipodial actin network undergoing retrograde flow using 3D Brownian dynamics. Retrograde flow is promoted in simulations by pushing forces from the leading edge (due to actin polymerization), pulling forces (due to molecular motors), and opposed by viscous drag in cytoplasm and focal adhesions. Simulated networks have densities similar to measurements in prior electron micrographs. Connectivity between individual actin segments is maintained by permanent and dynamic crosslinkers. Remodeling of the network occurs via the addition of single actin filaments near the leading edge and via filament bond severing. We investigated how several parameters affect the stress distribution, network deformation and retrograde flow speed. The model captures the decrease in retrograde flow upon increase of focal adhesion strength. The stress profile changes from compression to extension across the leading edge, with regions of filament bending around focal adhesions. The model reproduces the observed reduction in retrograde flow speed upon exposure to cytochalasin D, which halts actin polymerization. Changes in crosslinker concentration and dynamics, as well as in the orientation pattern of newly added filaments demonstrate the model’s ability to generate bundles of filaments perpendicular (actin arcs) or parallel (microspikes) to the protruding direction.


Sign in / Sign up

Export Citation Format

Share Document