scholarly journals Exquisite Sensitivity to Dual BRG1/BRM ATPase Inhibitors Reveals Broad SWI/SNF Dependencies in Acute Myeloid Leukemia

2021 ◽  
Author(s):  
Florencia Rago ◽  
Lindsey Ulkus Rodrigues ◽  
Megan Bonney ◽  
Kathleen Sprouffske ◽  
Esther Kurth ◽  
...  

AbstractVarious subunits of mammalian SWI/SNF chromatin remodeling complexes display loss-of-function mutations characteristic of tumor suppressors in different cancers, but an additional role for SWI/SNF supporting cell survival in distinct cancer contexts is emerging. In particular, genetic dependence on the catalytic subunit BRG1/SMARCA4 has been observed in acute myeloid leukemia (AML), yet the feasibility of direct therapeutic targeting of SWI/SNF catalytic activity in leukemia remains unknown. Here, we evaluated the activity of dual BRG1/BRM ATPase inhibitors across a genetically diverse panel of cancer cell lines and observed that hematopoietic cancer cell lines were among the most sensitive compared to other lineages. This result was striking in comparison to data from pooled short hairpin RNA screens, which showed that only a subset of leukemia cell lines display sensitivity to BRG1 knockdown. We demonstrate that combined genetic knockdown of BRG1 and BRM is required to recapitulate the effects of dual inhibitors, suggesting that SWI/SNF dependency in human leukemia extends beyond a predominantly BRG1-driven mechanism. Through gene expression and chromatin accessibility studies, we show that the dual inhibitors act at genomic loci associated with oncogenic transcription factors, and observe a downregulation of leukemic pathway genes including MYC, a well-established target of BRG1 activity in AML. Overall, small molecule inhibition of BRG1/BRM induced common transcriptional responses across leukemia models resulting in a spectrum of cellular phenotypes. Our studies reveal the breadth of SWI/SNF dependency and support targeting SWI/SNF catalytic function as a potential therapeutic strategy in AML.

Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1151-1158 ◽  
Author(s):  
PS Crosier ◽  
ST Ricciardi ◽  
LR Hall ◽  
MR Vitas ◽  
SC Clark ◽  
...  

Abstract Because mutations in receptor tyrosine kinases may contribute to cellular transformation, studies were undertaken to examine c-kit in human leukemia. Isoforms of c-kit have been characterized in the human megakaryoblastic leukemia cell line M-07. Deletion of the four amino acids Gly-Asn-Asn-Lys in the extracellular domain represents an alternatively spliced isoform that has been shown by others, in mice, to be associated with constitutive receptor autophosphorylation (Reith et al, EMBO J 10:2451, 1991). Additional isoforms differ in the inclusion or exclusion of a serine residue in the interkinase domain, a region that contains the binding site for phosphatidylinositol 3- kinase. By RNase protection analysis, we have shown coexpression of the Gly-Asn-Asn-Lys+ and Gly-Asn-Asn-Lys- isoforms, with dominance of the Gly-Asn-Asn-Lys- transcript, in normal human bone marrow, normal melanocytes, a range of tumor cell lines, and the blasts of 23 patients with acute myeloid leukemia. Analysis of transcripts for the Ser+ and Ser- isoforms also showed coexpression in all normal and leukemic cells examined. The ratios of isoform expression for both the Gly-Asn-Asn-Lys and Ser variants were relatively constant, providing no evidence in the tumors examined that upregulation of one isoform contributes to the neoplastic process.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1536-1536 ◽  
Author(s):  
Huilin Huang ◽  
Hengyou Weng ◽  
Xi Qin ◽  
Boxuan Simen Zhao ◽  
Lou Dore ◽  
...  

Abstract N 6-methyladenosine (m6A) modification is the most abundant internal RNA modification in eukaryotes. Recent studies have shown that the dynamic and reversible regulation of m6A modifications in mRNAs or non-coding RNAs plays critical roles in tissue development, stem cell self-renewal and differentiation, control of heat shock response, and circadian clock controlling, as well as in RNA metabolism and processing. However, little is known about the functions of m6A and m6A regulators in malignant hematopoiesis. METTL14 is a major m6A writer which together with METTL3 forms the core of the methyltransferase complex that catalyzes the conversion of adenosine (A) to m6A. Through qPCR assays, we found that METTL14 was aberrantly up-regulated in mononuclear cells (MNC) from acute myeloid leukemia (AML) patients with t(11q23), t(15;17), or t(8;21) relative to those from healthy donors. To investigate the pathological role of METTL14 in AML, we transduced lineage negative (Lin-) bone marrow (BM) progenitor cells from Mettl14fl/flCreERT mice with MLL-AF9, AML1-ETO9a, or PML-RARa fusion genes and performed colony-forming/replating assays with or without addition of 4-hydroxytamoxifen (4-OHT). Induction of genetic knockout of Mettl14 by 4-OHT treatment remarkably impaired the colony-forming ability of all these AML-related fusion genes after replating. After the first round of plating, we harvested MLL-AF9-transduced cells that were not treated with 4-OHT and transplanted them into lethally irradiated recipient mice. As expected, tamoxifen (TAM) treatment of transplanted mice significantly delayed leukemogenesis compared to mice treated with vehicle (MLL-AF9+TAM, with median survival of 91 days; MLL-AF9+vehicle, with median survival of 71 days; P=0.0012) (Fig.1A). In addition, specific knockdown of Mettl14 with shRNAs showed similar patterns to Mettl14 knockout. Thus our data demonstrate that Mettl14 is crucial for cell transformation and leukemogenesis. Further, to determine the role of Mettl14 in the maintenance of leukemia, we transduced leukemic BM cells from primary MLL-AF9 leukemic mice with shRNAs against Mettl14 or scramble shRNA and transplanted these cells into lethally irradiated recipient mice. Again, a significantly prolonged survival was observed in Mettl14 knockdown groups compared to that in the control group (MLL-AF9+shRNA1, with median survival of 32 days; MLL-AF9+shRNA2, with median survival of 32 days; MLL-AF9+shScramble, with median survival of 23.5 days; P< 0.001 for both knockdown groups) (Fig.1B). Noticeable, mice in Mettl14 knockdown groups showed less c-kit+ cells in BM than mice in the control group (Fig.1C). In addition to the mouse model, we used human leukemia cell lines to investigate the function of METTL14 in human AML cells. Silencing of METTL14 with shRNAs significantly inhibited cell viability, induced apoptosis as well as terminal differentiation of MONOMAC6 and NB4 cell lines (Fig.1D, E, F). Moreover, xenograft model showed that repression of METTL14 significantly inhibited the engraftment of MONOMAC6 cells and thus delayed the onset of leukemia in NSG-SGM3 (NSGS) immunodeficient mice (Fig.1G). Furthermore, knockdown of METTL14 sensitized MONOMAC cells to ATRA or PMA-induced differentiation. Taken together, our results support the oncogenic role of METTL14 in AML and highlight METTL14 as a novel therapeutic target in AML. Figure 1 Oncogenic roles of METTL14 in AML. Figure 1. Oncogenic roles of METTL14 in AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1151-1158 ◽  
Author(s):  
PS Crosier ◽  
ST Ricciardi ◽  
LR Hall ◽  
MR Vitas ◽  
SC Clark ◽  
...  

Because mutations in receptor tyrosine kinases may contribute to cellular transformation, studies were undertaken to examine c-kit in human leukemia. Isoforms of c-kit have been characterized in the human megakaryoblastic leukemia cell line M-07. Deletion of the four amino acids Gly-Asn-Asn-Lys in the extracellular domain represents an alternatively spliced isoform that has been shown by others, in mice, to be associated with constitutive receptor autophosphorylation (Reith et al, EMBO J 10:2451, 1991). Additional isoforms differ in the inclusion or exclusion of a serine residue in the interkinase domain, a region that contains the binding site for phosphatidylinositol 3- kinase. By RNase protection analysis, we have shown coexpression of the Gly-Asn-Asn-Lys+ and Gly-Asn-Asn-Lys- isoforms, with dominance of the Gly-Asn-Asn-Lys- transcript, in normal human bone marrow, normal melanocytes, a range of tumor cell lines, and the blasts of 23 patients with acute myeloid leukemia. Analysis of transcripts for the Ser+ and Ser- isoforms also showed coexpression in all normal and leukemic cells examined. The ratios of isoform expression for both the Gly-Asn-Asn-Lys and Ser variants were relatively constant, providing no evidence in the tumors examined that upregulation of one isoform contributes to the neoplastic process.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 5042-5042 ◽  
Author(s):  
Suning Chen ◽  
Bjoern Schneider ◽  
Stefan Nagel ◽  
Robert Geffers ◽  
Maren Kaufmann ◽  
...  

Abstract Abstract 5042 Background In acute myeloid leukemia (AML) a recurrent chromosome abnormality t(12;15)(p13;q25) fuses ETV6 with NTRK3. This rearrangement uniquely occurs in both solid tumors – including secretory breast cancer where it has been recently shown to target WNT signalling (Li et al., Cancer Cell 2007, 12: 542) - and leukemia, but has yet to be characterized in the hematologic setting. Tyrosine receptor kinases (TRK) play key roles in leukemogenesis and already serve as therapeutic targets. We set out to characterize potential downstream targets of ETV6-NTKR3 in AML cells. Methods and Cells By applying molecular cytogenetics, rapid amplification of c-DNA ends, microarray transcriptional profiling, reverse transcriptase quantitative-PCR, sequencing technology, and pathway analysis we defined and characterized the transcriptosome of a t(12;15) cell line (AP-1060) recently established from a patient with acute promyelocytic leukemia. We also investigated the transcriptional responses of AP-1060 cells to TRKi(nhibitor). For comparison we used, firstly a panel of 12 AML cell lines lacking ETV6-NTRK3 or PML-RARA, followed by NB-4 cells with solo PML-RARA. Results FISH confirmed ETV6 rearrangement, while 3′-RACE and RT-PCR identified and confirmed ETV6-NTRK3 fusion transcripts. Sequencing revealed both ETV6 exon-4 / NTKR3 exon-14, and ETV6 exon-2 / exon-18 of NTKR3 (hematopoietic) transcripts - the former dominating. Comparative transcriptional profiling of AP-1060 and control AML cells with or without PML-RARA showed upregulation of RAS-MAPK and PI3K-AKT related genes, highlighting the involvement of both TRK physiological signaling pathways via ETV6-NTRK3. Top genes upregulated in AP-1060 confer signatures both for AML - CCNA1, CD96, DSU, EVI1, HGF, IL32, LGALS3, MDS1, TLE1, TSPAN2; and lymphocyte development - BSPRY, BST1, CCR6, EMP1, GIMAP1, GZMA, PLEKHG1. Several primitive hematopoietic or stem cell mRNAs were also overexpressed, including PRSS2, CD96, SIPA1L2, and PYHIN1. Prominent downregulated genes also included: ADD3, CD36, HOXA-9/10, LGALS9, MALAT1, PGDS, PLA2G4A (AML signature); HOXB4, KIAA1949, NR2F6, TEAD4 (stem cell); and LY6E, TRIM44 (lymphocyte signature). Growth and proliferation of ETV6-NTKR3 cells was exquisitely sensitive to TRKi treatments which spared control AML and to which NB-4 cells were highly resistant. Accordingly we used pharmacologic modulation of conspicuously expressed genes by small molecule TRKi treatment to highlight likely kinase signaling targets among conspicuously expressed genes. Several candidate target genes thus emerged, notably AWNT1, IL32, and the MDS-EVI1 fusion transcript. Salient pharmacologically unmodulated genes were preferentially stem cell in character highlighting this setting for t(12;15) formation in AP-1060 cells. Bioinformatic pathway analysis (http://david.abcc.ncifcrf.gov/) of both up- and down- conspicuously regulated genes identified “Alternative Splicing” as top category, with respectively 743 and 373 alternate spliceform genes up- and down-regulated. These included several genes whose spliceforms may be differentially expressed in oncogenesis, including MDS1-EVI1/EVI1, MALAT1, and WT1/AWT1. Interestingly, a key pre-mRNA splicing gene, MBNL2 was conspicuously downregulated, while another spliceosomal component THOC5 (C22orf19), recently identified as a leukemic kinase signalling target (Pierce et al., Br J Haematol 2008;141:641), is upregulated. Conclusions We present a human leukemia model and resource for ETV6-NTRK3. Taken together, our findings support spliceosomal targeting by ETV6-NTRK3 and suggest a possible underlying mechanistic framework. Additional targets, e.g. WNT signaling, seem to be shared with solid tumors bearing the same oncogene fusion. Perspectives: Future work includes transcriptosomal analysis of AP-1060 cells after knockdown of ETV6-NTRK3 and key splicesomal genes, such as THOC5, by short-hairpin RNAs, and novel, highly selective 4-aminopyrazolylpyrimidine TRKi (Thress et al., Mol Cancer Therapy 2009;8:1818). Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 11087-11087
Author(s):  
J. Barret ◽  
C. Dumontet ◽  
J. Annereau ◽  
V. Brel ◽  
F. Breillout ◽  
...  

11087 Background: The Polyamine Transport System (PTS) is an energy-dependent machinery generally hyper-active in cancer cells with a high demand for polyamines. This system can be viewed as a suitable molecular gate to deliver selectively polyamine-based molecules into cancer cells. We exploited this strategy to target to PTS-positive cancer cells, F14512 , a novel polyamine-epipodophyllotoxin conjugate, that exhibits significant anti-tumor activity and has been selected for further clinical development. This study was undertaken to investigate the potential of N-methyl-spermine-NBD, a proprietary fluorescent polyamine conjugate, designed to select patients with PTS-positive leukemic cells. Methods: The uptake of this probe was first measured by flow cytometry in a panel of human leukemia cell lines. The procedure was then adapted and optimized to measure N-methyl-spermine-NBD fluorescence in blood samples from healthy donors. After the selection of the optimal CD gating, median value of fluorescence of our probe was measured by flow cytometry in lymphocytes and blastes of each patient. Results: Data showed that high level of fluorescence was detected in F14512 -sensitive cancer cell lines whereas leukemia cells responding poorly to F14512 generally exhibited very low levels of PTS. We then demonstrated that human leukocytes incorporate N-methyl-spermine-NBD in a time, concentration and temperature dependent manner, confirming the active transport of polyamines in these cells. The incorporation in lymphocytes was found low and with a weak inter-individual variation. A panel of 50 fresh human acute myeloid leukemia samples showed a larger inter-individual variation and, interestingly, incorporation of the fluorescent probe was generally higher in leukemia blasts than in lymphocytes. Median values of fluorescence intensity were similar in blood and bone marrow samples, suggesting that these two sources might be used for this analysis. Conclusions: The data show that the PTS can easily be evaluated in fresh AML blasts and provides a simple means to identify patients for future enrollment in clinical trials with F14512. [Table: see text]


2019 ◽  
Vol 18 (10) ◽  
pp. 1457-1468
Author(s):  
Michelle X.G. Pereira ◽  
Amanda S.O. Hammes ◽  
Flavia C. Vasconcelos ◽  
Aline R. Pozzo ◽  
Thaís H. Pereira ◽  
...  

Background: Acute myeloid leukemia (AML) represents the largest number of annual deaths from hematologic malignancy. In the United States, it was estimated that 21.380 individuals would be diagnosed with AML and 49.5% of patients would die in 2017. Therefore, the search for novel compounds capable of increasing the overall survival rate to the treatment of AML cells is urgent. Objectives: To investigate the cytotoxicity effect of the natural compound pomolic acid (PA) and to explore the mechanism of action of PA in AML cell lines with different phenotypes. Methods: Three different AML cell lines, HL60, U937 and Kasumi-1 cells with different mechanisms of resistance were used to analyze the effect of PA on the cell cycle progression, on DNA intercalation and on human DNA topoisomerases (hTopo I and IIα) in vitro studies. Theoretical experiments of the inhibition of hTopo I and IIα were done to explore the binding modes of PA. Results: PA reduced cell viability, induced cell death, increased sub-G0/G1 accumulation and activated caspases pathway in all cell lines, altered the cell cycle distribution and inhibited the catalytic activity of both human DNA topoisomerases. Conclusion: Finally, this study showed that PA has powerful antitumor activity against AML cells, suggesting that this natural compound might be a potent antineoplastic agent to improve the treatment scheme of this neoplasm.


2021 ◽  
Vol 11 (1) ◽  
pp. 460
Author(s):  
Petra Otevřelová ◽  
Barbora Brodská

Survivin is a 16.5 kDa protein highly expressed in centrosomes, where it controls proper sister chromatid separation. In addition to its function in mitosis, survivin is also involved in apoptosis. Overexpression of survivin in many cancer types makes it a suitable target for cancer therapy. Western blotting and confocal microscopy were used to characterize the effect of chemotherapy on acute myeloid leukemia (AML) cells. We found enhanced survivin expression in a panel of AML cell lines treated with cytarabine (Ara-C), which is part of a first-line induction regimen for AML therapy. Simultaneously, Ara-C caused growth arrest and depletion of the mitotic cell fraction. Subsequently, the effect of a second component of standard therapy protocol, idarubicin, and of a known survivin inhibitor, YM-155, on cell viability and survivin expression and localization in AML cells was investigated. Idarubicin reversed Ara-C-induced survivin upregulation in the majority of AML cell lines. YM-155 caused survivin deregulation together with a viability decrease in cells resistant to idarubicin treatment, suggesting that YM-155 might be efficient in a specific subset of AML patients. Expression levels of other apoptosis-related proteins, in particular X-linked inhibitor of apoptosis (XIAP), Mcl-1, and p53, and of the cell-cycle inhibitor p21 considerably changed in almost all cases, confirming the off-target effects of YM-155.


Sign in / Sign up

Export Citation Format

Share Document