scholarly journals The nematode worm C. elegans chooses between bacterial foods exactly as if maximizing economic utility

2021 ◽  
Author(s):  
Abraham Katzen ◽  
Hui-Kuan Chung ◽  
William Harbaugh ◽  
Christina Della Iacono ◽  
Nicholas Jackson ◽  
...  

In value-based decision making, options are selected according to subjective values assigned by the individual to available goods and actions. Despite the importance of this faculty of the mind, the neural mechanisms of value assignments, and how choices are directed by them, remain obscure. To investigate this problem, we used a classic measure of utility maximization, the Generalized Axiom of Revealed Preference, to quantify internal consistency of food preferences in Caenorhabditis elegans, a nematode worm with a nervous system of only 302 neurons. Using a novel combination of microfluidics and electrophysiology, we found that C. elegans food choices fulfill the necessary and sufficient conditions for utility maximization, indicating that nematodes behave exactly as if they maintain, and attempt to maximize, an underlying representation of subjective value. Food choices are well-fit by a utility function widely used to model human consumers. Moreover, as in many other animals, subjective values in C. elegans are learned, a process we now find requires intact dopamine signaling. Differential responses of identified chemosensory neurons to foods with distinct growth potential are amplified by prior consumption of these foods, suggesting that these neurons may be part of a value-assignment system. The demonstration of utility maximization in an organism with a nervous system of only 302 neurons sets a new lower bound on the computational requirements for its execution, and offers the prospect of an essentially complete explanation of value-based decision making at single neuron resolution.

2018 ◽  
Author(s):  
Gareth Harris ◽  
Taihong Wu ◽  
Gaia Linfield ◽  
Myung-Kyu Choi ◽  
He Liu ◽  
...  

AbstractIn the natural environment, animals often encounter multiple sensory cues that are simultaneously present. The nervous system integrates the relevant sensory information to generate behavioral responses that have adaptive values. However, the signal transduction pathways and the molecules that regulate integrated behavioral response to multiple sensory cues are not well defined. Here, we characterize a collective modulatory basis for a behavioral decision in C. elegans when the animal is presented with an attractive food source together with a repulsive odorant. We show that distributed neuronal components in the worm nervous system and several neuromodulators orchestrate the decision-making process, suggesting that various states and contexts may modulate the multisensory integration. Among these modulators, we identify a new function of a conserved TGF-β pathway that regulates the integrated decision by inhibiting the signaling from a set of central neurons. Interestingly, we find that a common set of modulators, including the TGF-β pathway, regulate the integrated response to the pairing of different foods and repellents. Together, our results provide insights into the modulatory signals regulating multisensory integration and reveal potential mechanistic basis for the complex pathology underlying defects in multisensory processing shared by common neurological diseases.Author SummaryThe present study characterizes the modulation of a behavioral decision in C. elegans when the worm is presented with a food lawn that is paired with a repulsive smell. We show that multiple sensory neurons and interneurons play roles in making the decision. We also identify several modulatory molecules that are essential for the integrated decision when the animal faces a choice between the cues of opposing valence. We further show that many of these factors, which often represent different states and contexts, are common for behavioral decisions that integrate sensory information from different types of foods and repellents. Overall, our results reveal a collective molecular and cellular basis for integration of simultaneously present attractive and repulsive cues to fine-tune decision-making.


2018 ◽  
Author(s):  
Fernando Calahorro ◽  
Francesca Keefe ◽  
James Dillon ◽  
Lindy Holden-Dye ◽  
Vincent O’Connor

ABSTRACTThe integration of distinct sensory modalities is essential for behavioural decision making. In C. elegans this process is coordinated by neural circuits that integrate sensory cues from the environment to generate an appropriate behaviour at the appropriate output muscles. Food is a multimodal cue that impacts on the microcircuits to modulating feeding and foraging drivers at the level of the pharyngeal and body wall muscle respectively. When food triggers an upregulation in pharyngeal pumping it allows the effective ingestion of food. Here we show that a C. elegans mutant in the single orthologous gene of human neuroligins, nlg-1 are defective in food induced pumping. This is not explained by an inability to sense food, as nlg-1 mutants are not defective in chemotaxis towards bacteria. In addition, we show that neuroligin is widely expressed in the nervous system including AIY, ADE, ALA, URX and HSN neurones. Interestingly, despite the deficit in pharyngeal pumping neuroligin is not expressed within the pharyngeal neuromuscular network, which suggests an extrapharyngeal regulation of this circuit. We resolve electrophysiologically the neuroligin contribution to the pharyngeal circuit by mimicking a food-dependent pumping, and show that the nlg-1 phenotype is similar to mutants impaired in GABAergic and/or glutamatergic signalling. We suggest that neuroligin organizes extrapharyngeal circuits that regulate the pharynx. These observations based on the molecular and cellular determinants of feeding are consistent with the emerging role of neuroligin in discretely impacting functional circuits underpinning complex behaviours.


2021 ◽  
Author(s):  
Iris Hardege ◽  
Julia Morud ◽  
Jingfang Yu ◽  
Tatiana S Wilson ◽  
Frank Schroeder ◽  
...  

Trimethyl glycine, or betaine, is an amino acid derivative found in diverse organisms, from bacteria to plants and animals. It can function as an osmolyte to protect cells against osmotic stress, and building evidence suggests betaine may also play important functional roles in the nervous system. However, despite growing interest in betaine's roles in the nervous system, few molecular mechanisms have been elucidated. Here we identify the expression of betaine synthesis pathway genes in the nervous system of the nematode worm, C. elegans. We show that betaine, produced in a single pair of interneurons, the RIMs, can control complex behavioural states. Moreover, we also identify and characterise a new betaine-gated inhibitory ligand gated ion channel, LGC-41, which is required for betaine related behavioural changes. Intriguingly we observed expression of LGC-41 in punctate structures across several sensory and interneurons, including those synaptically connected to the RIMs. Our data presents a neuronal molecular mechanism for the action of betaine, via a specific receptor, in the control of complex behaviour within the nervous system of C. elegans. This may suggest a much broader role for betaine in the regulation of animal nervous systems than previously recognised.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Bicheng Han ◽  
Yongming Dong ◽  
Lin Zhang ◽  
Yan Liu ◽  
Ithai Rabinowitch ◽  
...  

Animals with complex brains can discriminate the spatial arrangement of physical features in the environment. It is unknown whether such sensitivity to spatial patterns can be accomplished in simpler nervous systems that lack long-range sensory modalities such as vision and hearing. Here we show that the nematode Caenorhabditis elegans can discriminate spatial patterns in its surroundings, despite having a nervous system of only 302 neurons. This spatial pattern selectivity requires touch-dependent dopamine signaling, including the mechanosensory TRP-4 channel in dopaminergic neurons and the D2-like dopamine receptor DOP-3. We find that spatial pattern selectivity varies significantly among C. elegans wild isolates. Electrophysiological recordings show that natural variations in TRP-4 reduce the mechanosensitivity of dopaminergic neurons. Polymorphic substitutions in either TRP-4 or DOP-3 alter the selectivity of spatial patterns. Together, these results demonstrate an ancestral role for dopamine signaling in tuning spatial pattern preferences in a simple nervous system.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


1979 ◽  
Vol 11 (2) ◽  
pp. 143-156 ◽  
Author(s):  
George Downs ◽  
Patrick Larkey

Author(s):  
Clio Korn ◽  
Thomas Akam ◽  
Kristian H. R. Jensen ◽  
Cristiana Vagnoni ◽  
Anna Huber ◽  
...  

AbstractDopamine plays a crucial role in adaptive behavior, and dysfunctional dopamine is implicated in multiple psychiatric conditions characterized by inflexible or inconsistent choices. However, the precise relationship between dopamine and flexible decision making remains unclear. One reason is that, while many studies have focused on the activity of dopamine neurons, efficient dopamine signaling also relies on clearance mechanisms, notably the dopamine transporter (DAT), which predominates in striatum, and catechol-O-methyltransferase (COMT), which predominates in cortex. The exact locus, extent, and timescale of the effects of DAT and COMT are uncertain. Moreover, there is limited data on how acute disruption of either mechanism affects flexible decision making strategies mediated by cortico-striatal networks. To address these issues, we combined pharmacological modulation of DAT and COMT with electrochemistry and behavior in mice. DAT blockade, but not COMT inhibition, regulated sub-second dopamine release in the nucleus accumbens core, but surprisingly neither clearance mechanism affected evoked release in prelimbic cortex. This was not due to a lack of sensitivity, as both amphetamine and atomoxetine changed the kinetics of sub-second release. In a multi-step decision making task where mice had to respond to reversals in either reward probabilities or the choice sequence to reach the goal, DAT blockade selectively impaired, and COMT inhibition improved, performance after reward reversals, but neither manipulation affected the adaptation of choices after action-state transition reversals. Together, our data suggest that DAT and COMT shape specific aspects of behavioral flexibility by regulating different aspects of the kinetics of striatal and cortical dopamine, respectively.


1996 ◽  
Vol 85 (4) ◽  
pp. 901-912 ◽  
Author(s):  
Michael C. Crowder ◽  
Laynie D. Shebester ◽  
Tim Schedl

Background The nematode Caenorhabditis elegans offers many advantages as a model organism for studying volatile anesthetic actions. It has a simple, well-understood nervous system; it allows the researcher to do forward genetics; and its genome will soon be completely sequenced. C. elegans is immobilized by volatile anesthetics only at high concentrations and with an unusually slow time course. Here other behavioral dysfunctions are considered as anesthetic endpoints in C. elegans. Methods The potency of halothane for disrupting eight different behaviors was determined by logistic regression of concentration and response data. Other volatile anesthetics were also tested for some behaviors. Established protocols were used for behavioral endpoints that, except for pharyngeal pumping, were set as complete disruption of the behavior. Time courses were measured for rapid behaviors. Recovery from exposure to 1 or 4 vol% halothane was determined for mating, chemotaxis, and gross movement. All experiments were performed at 20 to 22 degrees C. Results The median effective concentration values for halothane inhibition of mating (0.30 vol%-0.21 mM), chemotaxis (0.34 vol%-0.24 mM), and coordinated movement (0.32 vol% - 0.23 mM) were similar to the human minimum alveolar concentration (MAC; 0.21 mM). In contrast, halothane produced immobility with a median effective concentration of 3.65 vol% (2.6 mM). Other behaviors had intermediate sensitivities. Halothane's effects reached steady-state in 10 min for all behaviors tested except immobility, which required 2 h. Recovery was complete after exposure to 1 vol% halothane but was significantly reduced after exposure to immobilizing concentrations. Conclusions Volatile anesthetics selectively disrupt C. elegans behavior. The potency, time course, and recovery characteristics of halothane's effects on three behaviors are similar to its anesthetic properties in vertebrates. The affected nervous system molecules may express structural motifs similar to those on vertebrate anesthetic targets.


BMC Genomics ◽  
2008 ◽  
Vol 9 (1) ◽  
Author(s):  
Joseph D Watson ◽  
Shenglong Wang ◽  
Stephen E Von Stetina ◽  
W Clay Spencer ◽  
Shawn Levy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document