Behavioral Effects of Volatile Anesthetics in Caenorhabditis elegans

1996 ◽  
Vol 85 (4) ◽  
pp. 901-912 ◽  
Author(s):  
Michael C. Crowder ◽  
Laynie D. Shebester ◽  
Tim Schedl

Background The nematode Caenorhabditis elegans offers many advantages as a model organism for studying volatile anesthetic actions. It has a simple, well-understood nervous system; it allows the researcher to do forward genetics; and its genome will soon be completely sequenced. C. elegans is immobilized by volatile anesthetics only at high concentrations and with an unusually slow time course. Here other behavioral dysfunctions are considered as anesthetic endpoints in C. elegans. Methods The potency of halothane for disrupting eight different behaviors was determined by logistic regression of concentration and response data. Other volatile anesthetics were also tested for some behaviors. Established protocols were used for behavioral endpoints that, except for pharyngeal pumping, were set as complete disruption of the behavior. Time courses were measured for rapid behaviors. Recovery from exposure to 1 or 4 vol% halothane was determined for mating, chemotaxis, and gross movement. All experiments were performed at 20 to 22 degrees C. Results The median effective concentration values for halothane inhibition of mating (0.30 vol%-0.21 mM), chemotaxis (0.34 vol%-0.24 mM), and coordinated movement (0.32 vol% - 0.23 mM) were similar to the human minimum alveolar concentration (MAC; 0.21 mM). In contrast, halothane produced immobility with a median effective concentration of 3.65 vol% (2.6 mM). Other behaviors had intermediate sensitivities. Halothane's effects reached steady-state in 10 min for all behaviors tested except immobility, which required 2 h. Recovery was complete after exposure to 1 vol% halothane but was significantly reduced after exposure to immobilizing concentrations. Conclusions Volatile anesthetics selectively disrupt C. elegans behavior. The potency, time course, and recovery characteristics of halothane's effects on three behaviors are similar to its anesthetic properties in vertebrates. The affected nervous system molecules may express structural motifs similar to those on vertebrate anesthetic targets.

2006 ◽  
Vol 105 (3) ◽  
pp. 498-502 ◽  
Author(s):  
Margaret M. Sedensky ◽  
Melissa A. Pujazon ◽  
Phil G. Morgan

Background The gene unc-1 plays a central role in determining volatile anesthetic sensitivity in Caenorhabditis elegans. Because different unc-1 alleles cause strikingly different phenotypes in different volatile anesthetics, the UNC-1 protein is a candidate to directly interact with volatile anesthetics. UNC-1 is a close homologue of the mammalian protein stomatin, for which a mouse knockout was recently constructed. Because the stomatin gene is expressed in dorsal root ganglion cells, the authors hypothesized that the knockout would have an effect on anesthetic sensitivity in mice similar to that seen in nematodes. Methods Mice were placed in semiclosed chambers and exposed to continuous flows of diethyl ether, halothane, or isoflurane in air. Using lack of response to tail clamp as an endpoint, the authors determined the EC50s for the knockout strain compared with the nonmutated parental strain. They compared the differences seen in the mouse strains with the differences seen in the nematode strains. Results Stomatin-deficient mice had a 12% increase in sensitivity to diethyl ether but no significant change in sensitivity to halothane or isoflurane compared with wild type. No defect in locomotion was noted in the mutant mouse. Conclusions Nematodes and mice with deletions of the stomatin gene both have increased sensitivity to diethyl ether. Neither nematodes nor mice with stomatin deficiencies have significantly altered sensitivity to isoflurane or halothane. The effects of stomatin deficiency cross phylogenetic boundaries and support the importance of this protein in anesthetic response and the use of C. elegans as a model for anesthetic action in mammals.


Author(s):  
Matthew G. Andrusiak ◽  
Yishi Jin

Recent evidence has highlighted the dynamic nature of mRNA regulation, particularly in the nervous system, from complex pre-mRNA processing to long-range transport and long-term storage of mature mRNAs. In accordance with the importance for mRNA-mediated regulation of nervous system development and maintenance, various mutations in RNA-binding proteins are associated with a range of human disorders. C. elegans express many RNA-binding factors that have human orthologs and perform similar biochemical functions. This chapter focuses on the research using C. elegans to dissect molecular mechanisms involving mRNA-mediated pathways. It highlights the key approaches and findings that integrate genetic and genomic studies in the nervous system. The analyses of genetic mutants, primarily using forward genetics, offer functional insights for genes important for neuronal development, synaptic transmission, and neuronal repair. In combination with single-neuron cell biology and cell-type genomics, the knowledge learned from this model organism has continued to lead to ground-breaking discoveries.


1998 ◽  
Vol 89 (6) ◽  
pp. 1509-1517 ◽  
Author(s):  
Bruno van Swinderen ◽  
Alex Galifianakis ◽  
Michael C. Crowder

Background Genetics provides a way to evaluate anesthetic action simultaneously at the molecular and behavioral levels. Results from strains that differ in anesthetic sensitivity have been mixed in their support of unitary theories of anesthesia. Here the authors use the previously demonstrated large variation of halothane sensitivities in Caenorhabditis elegans recombinant inbred strains to assess the similarities of the determinants of halothane action with those of another volatile anesthetic, isoflurane. Methods The recombinant inbred strains, constructed from two evolutionarily distinct C. elegans lineages, were phenotyped. A coordination assay on agar quantified the sensitivity to the volatile anesthetics; median effective concentrations (EC50s) were calculated by nonlinear regression of concentration-response data and were correlated between the drugs for those strains tested in common. Genetic loci were identified by statistical association between EC50s and chromosomal markers. Results The recombinant inbred strains varied dramatically in sensitivity to halothane and isoflurane, with a 10-fold range in EC50s. Heritability estimates for each drug were imprecise but altogether high (49-80%). Halothane and isoflurane EC50s were significantly correlated (r=0.71, P < 10(-9)). Genetic loci controlling sensitivity were found for both volatile anesthetics; the most significant determinant colocalized on chromosome V. A smaller recombinant inbred strain study of ethanol-induced immobility segregated different genetic effects that did not correlate with sensitivity to either halothane or isoflurane. Conclusions The genetic determinants driving the large variation in anesthetic sensitivity in these C. elegans recombinant inbred strains are very similar for halothane and isoflurane sensitivity.


2017 ◽  
Author(s):  
◽  
Bradly Alicea

ABSTRACTThe relatively new field of connectomics provides us with a unique window into nervous system function. In the model organism Caenorhabditis elegans, this promise is even greater due to the relatively small number of cells (302) in its nervous system. While the adult C. elegans connectome has been characterized, the emergence of these networks in development has yet to be established. In this paper, we approach this problem using secondary data describing the birth times of terminally-differentiated cells as they appear in the embryo and a connectomics model for nervous system cells in the adult hermaphrodite. By combining these two sources of data, we can better understand patterns that emerge in an incipient connectome. This includes identifying at what point in embryogenesis the cells of a connectome first comes into being, potentially observing some of the earliest neuron-neuron interactions, and making comparisons between the formally-defined connectome and developmental cell lineages. An analysis is also conducted to root terminally-differentiated cells in their developmental cell lineage precursors. This reveals subnetworks with different properties at 300 minutes of embryogenesis. Additional investigations reveal the spatial position of neuronal cells born during pre-hatch development, both within and outside the connectome model, in the context of all developmental cells in the embryo. Overall, these analyses reveal important information about the birth order of specific cells in the connectome, key building blocks of global connectivity, and how these structures correspond to key events in early development.


Author(s):  
Loïs Naudin ◽  
Nathalie Corson ◽  
M. A. Aziz-Alaoui ◽  
Juan Luis Jiménez Laredo ◽  
Thibaut Démare

The nematode Caenorhabditis elegans (C. elegans) is a well-known model organism in neuroscience. The relative simplicity of its nervous system, made up of few hundred neurons, shares some essential features with more sophisticated nervous systems, including the human one. If we are able to fully characterize the nervous system of this organism, we will be one step closer to understanding the mechanisms underlying the behavior of living things. Following a recently conducted electrophysiological survey on different C. elegans neurons, this paper aims at modeling the three non-spiking RIM, AIY and AFD neurons (arbitrarily named with three upper case letters by convention). To date, they represent the three possible forms of non-spiking neuronal responses of the C. elegans. To achieve this objective, we propose a conductance-based neuron model adapted to the electrophysiological features of each neuron. These features are based on current biological research and a series of in-silico experiments which use differential evolution to fit the model to experimental data. From the obtained results, we formulate a series of biological hypotheses regarding currents involved in the neuron dynamics. These models reproduce experimental data with a high degree of accuracy while being biologically consistent with state-of-the-art research.


2010 ◽  
Vol 38 (1) ◽  
pp. 172-176 ◽  
Author(s):  
Jeff W. Barclay ◽  
Margaret E. Graham ◽  
Mark R. Edwards ◽  
James R. Johnson ◽  
Alan Morgan ◽  
...  

Acute exposure to ethanol is known to modulate signalling within the nervous system. Physiologically these effects are both presynaptic and postsynaptic in origin; however, considerably more research has focused primarily on postsynaptic targets. Recent research using the model organism Caenorhabditis elegans has determined a role for specific proteins (Munc18-1 and Rab3) and processes (synaptic vesicle recruitment and fusion) in transducing the presynaptic effects of ethanol. In the present paper, we review these results, identifying the proteins and protein interactions involved in ethanol sensitivity and discuss their links with mammalian studies of alcohol abuse.


Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 643-655 ◽  
Author(s):  
Bruno van Swinderen ◽  
Laura B Metz ◽  
Laynie D Shebester ◽  
Jane E Mendel ◽  
Paul W Sternberg ◽  
...  

Abstract To identify genes controlling volatile anesthetic (VA) action, we have screened through existing Caenorhabditis elegans mutants and found that strains with a reduction in Go signaling are VA resistant. Loss-of-function mutants of the gene goa-1, which codes for the α-subunit of Go, have EC50s for the VA isoflurane of 1.7- to 2.4-fold that of wild type. Strains overexpressing egl-10, which codes for an RGS protein negatively regulating goa-1, are also isoflurane resistant. However, sensitivity to halothane, a structurally distinct VA, is differentially affected by Go pathway mutants. The RGS overexpressing strains, a goa-1 missense mutant found to carry a novel mutation near the GTP-binding domain, and eat-16(rf) mutants, which suppress goa-1(gf) mutations, are all halothane resistant; goa-1(null) mutants have wild-type sensitivities. Double mutant strains carrying mutations in both goa-1 and unc-64, which codes for a neuronal syntaxin previously found to regulate VA sensitivity, show that the syntaxin mutant phenotypes depend in part on goa-1 expression. Pharmacological assays using the cholinesterase inhibitor aldicarb suggest that VAs and GOA-1 similarly downregulate cholinergic neurotransmitter release in C. elegans. Thus, the mechanism of action of VAs in C. elegans is regulated by Goα, and presynaptic Goα-effectors are candidate VA molecular targets.


2016 ◽  
Vol 371 (1710) ◽  
pp. 20150407 ◽  
Author(s):  
Amel Alqadah ◽  
Yi-Wen Hsieh ◽  
Rui Xiong ◽  
Chiou-Fen Chuang

Left–right asymmetry in the nervous system is observed across species. Defects in left–right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing ‘C’ (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWC OFF (default) and AWC ON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Hongbing Jiang ◽  
Kevin Chen ◽  
Luis E. Sandoval ◽  
Christian Leung ◽  
David Wang

ABSTRACT Many fundamental biological discoveries have been made in Caenorhabditis elegans. The discovery of Orsay virus has enabled studies of host-virus interactions in this model organism. To identify host factors critical for Orsay virus infection, we designed a forward genetic screen that utilizes a virally induced green fluorescent protein (GFP) reporter. Following chemical mutagenesis, two Viro (virus induced reporter off) mutants that failed to express GFP were mapped to sid-3, a nonreceptor tyrosine kinase, and B0280.13 (renamed viro-2), an ortholog of human Wiskott-Aldrich syndrome protein (WASP). Both mutants yielded Orsay virus RNA levels comparable to that of the residual input virus, suggesting that they are not permissive for Orsay virus replication. In addition, we demonstrated that both genes affect an early prereplication stage of Orsay virus infection. Furthermore, it is known that the human ortholog of SID-3, activated CDC42-associated kinase (ACK1/TNK2), is capable of phosphorylating human WASP, suggesting that VIRO-2 may be a substrate for SID-3 in C. elegans. A targeted RNA interference (RNAi) knockdown screen further identified the C. elegans gene nck-1, which has a human ortholog that interacts with TNK2 and WASP, as required for Orsay virus infection. Thus, genetic screening in C. elegans identified critical roles in virus infection for evolutionarily conserved genes in a known human pathway. IMPORTANCE Orsay virus is the only known virus capable of naturally infecting the model organism Caenorhabditis elegans, which shares many evolutionarily conserved genes with humans. We exploited the robust genetic tractability of C. elegans to identify three host genes, sid-3, viro-2, and nck-1, which are essential for Orsay virus infection. Mutant animals that lack these three genes are highly defective in viral replication. Strikingly, the human orthologs of these three genes, activated CDC42-associated kinase (TNK2), Wiskott-Aldrich syndrome protein (WASP), and noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) are part of a known signaling pathway in mammals. These results suggest that TNK2, WASP, and NCK1 may play important roles in mammalian virus infection. IMPORTANCE Orsay virus is the only known virus capable of naturally infecting the model organism Caenorhabditis elegans, which shares many evolutionarily conserved genes with humans. We exploited the robust genetic tractability of C. elegans to identify three host genes, sid-3, viro-2, and nck-1, which are essential for Orsay virus infection. Mutant animals that lack these three genes are highly defective in viral replication. Strikingly, the human orthologs of these three genes, activated CDC42-associated kinase (TNK2), Wiskott-Aldrich syndrome protein (WASP), and noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) are part of a known signaling pathway in mammals. These results suggest that TNK2, WASP, and NCK1 may play important roles in mammalian virus infection.


2018 ◽  
Vol 373 (1758) ◽  
pp. 20170377 ◽  
Author(s):  
Hexuan Liu ◽  
Jimin Kim ◽  
Eli Shlizerman

We propose an approach to represent neuronal network dynamics as a probabilistic graphical model (PGM). To construct the PGM, we collect time series of neuronal responses produced by the neuronal network and use singular value decomposition to obtain a low-dimensional projection of the time-series data. We then extract dominant patterns from the projections to get pairwise dependency information and create a graphical model for the full network. The outcome model is a functional connectome that captures how stimuli propagate through the network and thus represents causal dependencies between neurons and stimuli. We apply our methodology to a model of the Caenorhabditis elegans somatic nervous system to validate and show an example of our approach. The structure and dynamics of the C. elegans nervous system are well studied and a model that generates neuronal responses is available. The resulting PGM enables us to obtain and verify underlying neuronal pathways for known behavioural scenarios and detect possible pathways for novel scenarios. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.


Sign in / Sign up

Export Citation Format

Share Document