scholarly journals Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients

2021 ◽  
Author(s):  
Ignacio Sanchez-Burgos ◽  
Jerelle A. Joseph ◽  
Rosana Collepardo-Guevara ◽  
Jorge R. Espinosa

ABSTRACTBiomolecular condensates are liquid-like membraneless compartments that contribute to the spatiotemporal organization of proteins, RNA, and other biomolecules inside cells. Some membraneless compartments, such as nucleoli, are dispersed as different condensates that do not grow beyond a certain size, or do not present coalescence over time. In this work, using a minimal protein model, we show that phase separation of binary mixtures of scaffolds and low-valency clients that can act as surfactants—i.e., that significantly reduce the droplet surface tension—can yield either a single drop or multiple droplets that conserve their sizes on long timescales (herein ‘multidroplet size-conserved’), depending on the scaffold to client ratio. Our simulations demonstrate that protein connectivity and condensate surface tension regulate the balance between these two scenarios. Multidroplet size-conserved behavior spontaneously arises at increasing surfactant-to-scaffold concentrations, when the interfacial penalty for creating small liquid droplets is sufficiently reduced by the surfactant proteins that are preferentially located at the interface. In contrast, low surfactant-to-scaffold concentrations enable continuous growth and fusion of droplets without restrictions. Overall, our work proposes one potential thermodynamic mechanism to help rationalize how size-conserved coexisting condensates can persist inside cells—shedding light on the roles of general biomolecular features such as protein connectivity, binding affinity, and droplet composition in this process.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ignacio Sanchez-Burgos ◽  
Jerelle A. Joseph ◽  
Rosana Collepardo-Guevara ◽  
Jorge R. Espinosa

AbstractBiomolecular condensates are liquid-like membraneless compartments that contribute to the spatiotemporal organization of proteins, RNA, and other biomolecules inside cells. Some membraneless compartments, such as nucleoli, are dispersed as different condensates that do not grow beyond a certain size, or do not present coalescence over time. In this work, using a minimal protein model, we show that phase separation of binary mixtures of scaffolds and low-valency clients that can act as surfactants—i.e., that significantly reduce the droplet surface tension—can yield either a single drop or multiple droplets that conserve their sizes on long timescales (herein ‘multidroplet size-conserved’ scenario’), depending on the scaffold to client ratio. Our simulations demonstrate that protein connectivity and condensate surface tension regulate the balance between these two scenarios. The multidroplet size-conserved scenario spontaneously arises at increasing surfactant-to-scaffold concentrations, when the interfacial penalty for creating small liquid droplets is sufficiently reduced by the surfactant proteins that are preferentially located at the interface. In contrast, low surfactant-to-scaffold concentrations enable continuous growth and fusion of droplets without restrictions. Overall, our work proposes one thermodynamic mechanism to help rationalize how size-conserved coexisting condensates can persist inside cells—shedding light on the roles of protein connectivity, binding affinity, and droplet composition in this process.


2005 ◽  
Vol 15 (4) ◽  
pp. 413-422 ◽  
Author(s):  
Michael M. Micci ◽  
S. J. Lee ◽  
B. Vieille ◽  
C. Chauveau ◽  
Iskendar Gokalp

Author(s):  
Shuai Meng ◽  
Qian Wang ◽  
Rui Yang

The phenomenon of impaction between liquid droplets and solid particles is involved in many scientific problems and engineering applications, such as impaction between sprayed droplet and solid particles in limestone injection desulfurization system and the collision between a droplet of the liquid to be granulated and a seed particle in fluidized bed spray granulation process. There are a lot of factors affected this phenomenon: droplet and particle size, momentum of both liquid droplet and solid particles, materials, surface conditions of the solid particles and so on. However the experimental or numerical researches have been done mostly pay attention to Specific application or process, so the impaction phenomenon has not been through studied, for example how different factors affected the impaction process with its effect on different applications. This paper focuses on the basic issue of interaction between droplet and solid particles. Three main factors were considered: ratio of diameter between the droplet and solid particle, relative velocity and the surface tension (including the contact angle between droplet and solid particle). All the study is based on simulation using SPH (smoothed particle hydrodynamics) method, and the surface tension is simulated by particle-particle interaction.


2020 ◽  
Author(s):  
M. S. Yousafzai ◽  
V. Yadav ◽  
S. Amiri ◽  
M.F. Staddon ◽  
A. P. Tabatabai ◽  
...  

AbstractIn liquid droplets, the balance of interfacial energies and substrate elasticity determines the shape of the droplet and the dynamics of wetting. In living cells, interfacial energies are not constant, but adapt to the mechanics of their environment. As a result, the forces driving the dynamics of wetting for cells and tissues are unclear and may be context specific. In this work, using a combination of experimental measurements and modeling, we show the surface tension of cell aggregates, as models of active liquid droplets, depends upon the size of the aggregate and the magnitude of applied load, which alters the wetting dynamics. Upon wetting rigid substrates, traction stresses are elevated at the boundary, and tension drives forward motion. By contrast, upon wetting compliant substrates, traction forces are attenuated, yet wetting occurs at a comparable rate. In this case, capillary forces at the contact line are elevated and aggregate surface tension contributes to strong outward, pressure-driven cellular flows. Thus, cell aggregates adapt to the mechanics of their environments, using pressure and traction as compensatory mechanisms to drive robust wetting.


1999 ◽  
Author(s):  
Suping Song ◽  
Ben Q. Li

Abstract Electrostatically positioned droplets are very useful for the fundamental study of solidification phenomena and the measurement of thermal physical properties. This paper descries a numerical analysis of surface deformation and surface tension driven flows in electrostatically positioned droplets in microgravity. The analysis is based on a fully coupled boundary element and finite element solution of the Maxwell equations, the Navier-Stokes equations and the energy balance equation. Results show that an applied electrostatic field results in a nonuniform electric stress distribution along the droplet surface, which, combined with surface tension, causes the droplet to deform into an ellipsoidal shape in microgravity. Laser heating induces a non-uniform temperature distribution in the droplet, which in turn produces Marangoni convection in the droplet. It is found that the viscous stress contribution to the deformation is small for a majority of cases. Also, a higher temperature gradient produces a stronger Marangoni convection in droplets with higher melting points that require more laser power. The internal recirculating flow may be reduced by more uniform laser heating. During the undercooling of the droplet, both temperature and fluid flow fields evolve in time such that the temperature gradient and the tangential velocities along the droplet surface subside in magnitude and reverse their directions.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 820 ◽  
Author(s):  
Yu-Ping Zhang ◽  
Di Fan ◽  
Xiu-Zhi Bai ◽  
Cheng-Xing Cui ◽  
Jun Chen ◽  
...  

Any solid surface with homogenous or varying surface energy can spontaneously show variable wettability to liquid droplets with different or identical surface tensions. Here, we studied a glass slide sprayed with a quasi-superamphiphobic coating consisting of a hexane suspension of perfluorosilane-coated nanoparticles. Four areas on the glass slide with a total length of 7.5 cm were precisely tuned via ultraviolet (UV) irradiation, and droplets with surface tensions of 72.1–33.9 mN m−1 were categorized at a tilting angle of 3°. Then, we fabricated a U-shaped device sprayed with the same coating and used it to sort the droplets more finely by rolling them in the guide groove of the device to measure their total rolling time and distance. We found a correlation between ethanol content/surface tension and rolling time/distance, so we used the same device to estimate the alcoholic strength of Chinese liquors and to predict the surface tension of ethanol aqueous solutions.


2020 ◽  
pp. 089686082097312
Author(s):  
Alicia Sobrino-Pérez ◽  
Alfonso Pérez-Escudero ◽  
Lucila Fernández-Arroyo ◽  
Ana Dorado-García ◽  
Berta Martín-Alcón ◽  
...  

Intraperitoneal pressure (IPP) is gaining consideration as a relevant parameter of peritoneal dialysis (PD) in adults, although many of its aspects are still pending clarification. We address here its stability over time and the validity of the usual method of clinical measurement, as proposed by Durand in 1992 but never specifically validated. We performed this validation by comparing Durand’s method and direct measurements with a central venous pressure system. We performed a total of 250 measurement pairs in 50 patients with different intraperitoneal volumes plus in-vitro measurements with a simulated peritoneum. Absolute differences between the two systems in vivo were 0.87 ± 0.91 cmH2O (range 0–5 cmH2O); only 6.4% of them were ≥3 cmH2O. In vitro results for both methods were identical. We also compared IPP measurements in the same patient separated by 1–4 h (514 measurement pairs in 136 patients), 1 week (92 pairs in 92 patients), and 2 years (34 pairs in 17 patients). Net differences of measurements separated by hours or 1 week were close to 0 cmH2O, with oscillations of 1.5 cmH2O in hours and 2.3 cmH2O in 1 week. IPP measured 2 years apart presented a net decrease of 2.5 ± 4.9 cmH2O, without correlation with body mass index changes or any other usual parameter of PD. In hours, 7% of IPP differences were >3 cmH2O, 22% in 1 week, and 50% in 2 years. In conclusion, Durand’s method is precise enough to measure IPP in peritoneal dialysis. This parameter is not stable over long timescales, so it is necessary to use recent measurements.


Author(s):  
In-Hwan Yang ◽  
Mohamed S. El-Genk

This paper presents numerical results of disperse liquid droplets forming in the dripping regime at the tip of a microtube into another co-flowing immiscible liquid in a coaxial microtube of larger diameter. Investigated are the effects of the interfacial surface tension, velocities and viscosities of the liquids and the diameters of the coaxial microtubes on the forming dynamics and the size of the droplet. The 2-D, transient Navier-Stockes equations, in conjunction with the momentum jump condition across the interface between the co-flowing liquids are solved using a finite element method. The solution tracks the interface and the growth of the droplet and predicts droplet size and forming frequency. The droplet’s dimensionless radius (rd*) is correlated within ± 10% in terms of the continuous liquid capillary number (Cac) and ratios of Reynolds numbers (Red/Rec) and microtube radii (Rc/Rd) of the co-flowing liquids as: rd*=0.225R*0.466/(Cac0.5)(Red/Rec).0.05


2021 ◽  
Vol 343 ◽  
pp. 128483
Author(s):  
Adel M. Yousif ◽  
Richard Snowball ◽  
Mario F. D'Antuono ◽  
Harmohinder S. Dhammu ◽  
Darshan L. Sharma

Sign in / Sign up

Export Citation Format

Share Document