scholarly journals Ecosystem photosynthesis in land-surface models: a first-principles approach

2021 ◽  
Author(s):  
Giulia Mengoli ◽  
Anna Agusti-Panareda ◽  
Souhail Boussetta ◽  
Sandy Patricia Harrison ◽  
Carlo Trotta ◽  
...  

Vegetation regulates land-atmosphere water and energy exchanges and is an essential component of land-surface models (LSMs). However, LSMs have been handicapped by assumptions that equate acclimated photosynthetic responses to environment with fast responses observable in the laboratory. These time scales can be distinguished by including specific representations of acclimation, but at the cost of further increasing parameter requirements. Here we develop an alternative approach based on optimality principles that predict the acclimation of carboxylation and electron-transport capacities, and a variable controlling the response of leaf-level carbon dioxide drawdown to vapour pressure deficit (VPD), to variations in growth conditions on a weekly to monthly time scale. In the 'P model', an optimality-based light-use efficiency model for gross primary production (GPP) on this time scale, these acclimated responses are implicit. Here they are made explicit, allowing fast and slow response time-scales to be separated and GPP to be simulated at sub-daily timesteps. The resulting model mimics diurnal cycles of GPP recorded by eddy-covariance flux towers in a temperate grassland and boreal, temperate and tropical forests, with no parameter changes between biomes. Best performance is achieved when biochemical capacities are adjusted to match recent midday conditions. This model suggests a simple and parameter-sparse method to include both instantaneous and acclimated responses within an LSM framework, with many potential applications in weather, climate and carbon-cycle modelling.

2021 ◽  
Author(s):  
Jan De Pue ◽  
José Miguel Barrios ◽  
Liyang Liu ◽  
Philippe Ciais ◽  
Alirio Arboleda ◽  
...  

<p>Over the past decades, land surface models have evolved into advanced tools which comprise detailed process descriptions and interactions at a broad range of scales. One of the challenges in these models is the accurate simulation of plant phenology. It is a key element at the nexus of the simulated hydrological and carbon cycle, where the leaf area index (LAI) plays a major role in flux partitioning, water balance and gross primary production.<br>In this study, three well-established models are used to simulate the intrinsically coupled fluxes of water, energy and carbon from terrestrial vegetation. ORCHIDEE, ISBA-CC and the LSA-SAF algorithm each have a different approach to represent plant phenology. Whereas ISBA-CC has a fairly simple biomass allocation scheme to represent the phenological cycle, ORCHIDEE relies on a dedicated phenology module, and LSA-SAF is driven by remote-sensed forcing variables, such as LAI. Simulations were performed for a wide range of hydro-climatic biomes and plant functional types at field scale. The simulated fluxes were validated using eddy-covariance measurements, and the simulated phenology was compared to remote-sensed observations.<br>These models are tools to extrapolate leaf-level processes to global scale climate predictions. The origin of the parameters controlling phenology-induced variability in these models ranges from plant-scale lab experiments to global-scale calibration. The aim of this study is to investigate the key parameters controlling phenology-induced variability in these models.</p>


2021 ◽  
Author(s):  
Sandy P. Harrison ◽  
Wolfgang Cramer ◽  
Oskar Franklin ◽  
Iain Colin Prentice ◽  
Han Wang ◽  
...  

2006 ◽  
Vol 87 (10) ◽  
pp. 1367-1380 ◽  
Author(s):  
A. J. Dolman ◽  
J. Noilhan ◽  
P. Durand ◽  
C. Sarrat ◽  
A. Brut ◽  
...  

The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for use by meteorologists, hydrologists, engineers, biogeochemists, agronomists, botanists, ecologists, geographers, climatologists, and educators. Simulations by 13 land models from five nations have gone into production of the analysis. The models are driven by forcing data derived from a combination of gridded atmospheric reanalyses and observations. The resulting analysis consists of multimodel means and standard deviations on the monthly time scale, including profiles of soil moisture and temperature at six levels, as well as daily and climatological (mean annual cycle) fields for over 50 land surface variables. The monthly standard deviations provide a measure of model agreement that may be used as a quality metric. An overview of key characteristics of the analysis is presented here, along with information on obtaining the data.


2012 ◽  
Vol 16 (9) ◽  
pp. 3451-3460 ◽  
Author(s):  
W. T. Crow ◽  
S. V. Kumar ◽  
J. D. Bolten

Abstract. The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely sensed vegetation indices (VI) is examined between January 2000 and December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strategies range from a simple antecedent precipitation index to the application of modern land surface models (LSMs) based on complex water and energy balance formulations. A quasi-global evaluation of lagged VI/soil moisture cross-correlation suggests, when globally averaged across the entire annual cycle, soil moisture estimates obtained from complex LSMs provide little added skill (< 5% in relative terms) in anticipating variations in vegetation condition relative to a simplified water accounting procedure based solely on observed precipitation. However, larger amounts of added skill (5–15% in relative terms) can be identified when focusing exclusively on the extra-tropical growing season and/or utilizing soil moisture values acquired by averaging across a multi-model ensemble.


2017 ◽  
Vol 18 (3) ◽  
pp. 897-915 ◽  
Author(s):  
Jennifer L. Jefferson ◽  
Reed M. Maxwell ◽  
Paul G. Constantine

Abstract Land surface models, like the Common Land Model component of the ParFlow integrated hydrologic model (PF-CLM), are used to estimate transpiration from vegetated surfaces. Transpiration rates quantify how much water moves from the subsurface through the plant and into the atmosphere. This rate is controlled by the stomatal resistance term in land surface models. The Ball–Berry stomatal resistance parameterization relies, in part, on the rate of photosynthesis, and together these equations require the specification of 20 input parameters. Here, the active subspace method is applied to 2100 year-long PF-CLM simulations, forced by atmospheric data from California, Colorado, and Oklahoma, to identify which input parameters are important and how they relate to three quantities of interest: transpiration, stomatal resistance from the sunlit portion of the canopy, and stomatal resistance from the shaded portion. The slope (mp) and intercept (bp) parameters associated with the Ball–Berry parameterization are consistently important for all locations, along with five parameters associated with ribulose bisphosphate carboxylase/oxygenase (RuBisCO)- and light-limited rates of photosynthesis [CO2 Michaelis–Menten constant at 25°C (kc25), maximum ratio of oxygenation to carboxylation (ocr), quantum efficiency at 25°C (qe25), maximum rate of carboxylation at 25°C (vcmx25), and multiplier in the denominator of the equation used to compute the light-limited rate of photosynthesis (wj1)]. The importance of these input parameters, quantified by the active variable weight, and the relationship between the input parameters and quantities of interest vary seasonally and diurnally. Input parameter values influence transpiration rates most during midday, summertime hours when fluxes are large. This research informs model users about which photosynthesis and stomatal resistance parameters should be more carefully selected. Quantifying sensitivities associated with the stomatal resistance term is necessary to better understand transpiration estimates from land surface models.


2018 ◽  
Vol 10 (5) ◽  
pp. 751 ◽  
Author(s):  
Sujay Kumar ◽  
Thomas Holmes ◽  
David Mocko ◽  
Shugong Wang ◽  
Christa Peters-Lidard

Sign in / Sign up

Export Citation Format

Share Document