scholarly journals ARS2-directed alternative splicing mediates CD28 driven T cell glycolysis and effector function

2021 ◽  
Author(s):  
G. Aaron Holling ◽  
Anand P Sharda ◽  
Mackenzie M Honikel ◽  
Caitlin M James ◽  
Shivana M Lightman ◽  
...  

CD8 T cell activation prompts extensive transcriptome remodeling underlying effector differentiation and function. Regulation of transcriptome composition by the mitogen-inducible nuclear cap-binding complex adaptor protein ARS2 has critical cell type-specific consequences, including thymic T cell survival. Here we show that ARS2 was upregulated by CD28 during activation of peripheral T cells, was essential for anti-tumor immunity, and facilitated T cell activation-induced alternative splicing. The novel splicing function of ARS2 was mediated at least in part by recruitment of splicing factors to nascent transcripts including the M2 isoform of pyruvate kinase (Pkm2), a key determinant of ARS2 function in CD8 T cells. Notably, ARS2-directed Pkm2 splicing occurred days after stimulation of PI3K-indepdendent CD28 signaling and increased glycolysis beyond levels determined by PI3K signaling during T cell priming. Thus, ARS2-directed Pkm2 splicing represents a mechanism by which CD28 drives glycolytic metabolism, allowing for optimal effector cytokine production and T cell anti-tumor immunity.

Blood ◽  
2011 ◽  
Vol 118 (3) ◽  
pp. 795-803 ◽  
Author(s):  
Katia Urso ◽  
Arantzazu Alfranca ◽  
Sara Martínez-Martínez ◽  
Amelia Escolano ◽  
Inmaculada Ortega ◽  
...  

Abstract The nuclear factor of activated T cells (NFAT) family of transcription factors plays important roles in many biologic processes, including the development and function of the immune and vascular systems. Cells usually express more than one NFAT member, raising the question of whether NFATs play overlapping roles or if each member has selective functions. Using mRNA knock-down, we show that NFATc3 is specifically required for IL2 and cyclooxygenase-2 (COX2) gene expression in transformed and primary T cells and for T-cell proliferation. We also show that NFATc3 regulates COX2 in endothelial cells, where it is required for COX2, dependent migration and angiogenesis in vivo. These results indicate that individual NFAT members mediate specific functions through the differential regulation of the transcription of target genes. These effects, observed on short-term suppression by mRNA knock-down, are likely to have been masked by compensatory effects in gene-knockout studies.


2020 ◽  
Vol 21 (17) ◽  
pp. 6118 ◽  
Author(s):  
Marianna Szczypka

Phosphodiesterase 7 (PDE7), a cAMP-specific PDE family, insensitive to rolipram, is present in many immune cells, including T lymphocytes. Two genes of PDE7 have been identified: PDE7A and PDE7B with three or four splice variants, respectively. Both PDE7A and PDE7B are expressed in T cells, and the predominant splice variant in these cells is PDE7A1. PDE7 is one of several PDE families that terminates biological functions of cAMP—a major regulating intracellular factor. However, the precise role of PDE7 in T cell activation and function is still ambiguous. Some authors reported its crucial role in T cell activation, while according to other studies PDE7 activity was not pivotal to T cells. Several studies showed that inhibition of PDE7 by its selective or dual PDE4/7 inhibitors suppresses T cell activity, and consequently T-mediated immune response. Taken together, it seems quite likely that simultaneous inhibition of PDE4 and PDE7 by dual PDE4/7 inhibitors or a combination of selective PDE4 and PDE7 remains the most interesting therapeutic target for the treatment of some immune-related disorders, such as autoimmune diseases, or selected respiratory diseases. An interesting direction of future studies could also be using a combination of selective PDE7 and PDE3 inhibitors.


2000 ◽  
Vol 20 (1) ◽  
pp. 70-80 ◽  
Author(s):  
Kristen W. Lynch ◽  
Arthur Weiss

ABSTRACT Multiple isoforms of the protein tyrosine phosphatase CD45 are expressed on the surface of human T cells. Interestingly, the expression of these isoforms has been shown to vary significantly upon T-cell activation. In this report, we describe a novel cell line-based model system in which we can mimic the activation-induced alternative splicing of CD45 observed in primary T cells. Of the many proximal signaling events induced by T-cell stimulation, we show that activation of protein kinase C and activation of Ras are important for the switch toward the exclusion of CD45 variable exons, whereas events related to Ca2+ flux are not. In addition, the ability of cycloheximide to block the activation-induced alternative splicing of CD45 suggests a requirement for de novo protein synthesis. We further demonstrate that sequences which have previously been implicated in the tissue-specific regulation of CD45 variable exons are likewise necessary and sufficient for activation-induced splicing. These results provide an initial understanding of the requirements for CD45 alternative splicing upon T-cell activation, and they confirm the importance of this novel cell line in facilitating a more detailed analysis of the activation-induced regulation of CD45 than has been previously possible.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4138-4138
Author(s):  
Kankana Bardhan ◽  
Nikolaos Patsoukis ◽  
Donna M Berry ◽  
Jane McGlade ◽  
Vassiliki A. Boussiotis

Abstract TCR stimulation triggers the activation of protein tyrosine kinases resulting in phosphorylation of the adaptor protein LAT. SLP-76, interacts constitutively with PLC-γ1 and with the SH3 domain of Gads, which via its SH2 domain mediates inducible recruitment of SLP-76 and PLC-γ1 to LAT, upon T cell activation. PLC-γ1 hydrolyzes phosphatidylinositol-4, 5 bisphosphate [PI(4,5)P2], generating inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), second messengers responsible for mediating intracellular calcium release and activation of downstream signals. The adaptor protein RIAM constitutively interacts with PLC-γ1 and is required for PLC-γ1 activation. RIAM is a multidomain protein with a small N-terminus proline-rich region, two coiled-coiled regions, sequential Ras association (RA) and pleckstrin homology (PH) domains, and a large C-terminus proline-rich region, which interacts with PLC-γ1. The RA domain of RIAM has specificity for Rap1-GTP whereas the PH domain binds to the PLC-γ1 substrate PI(4,5)P2. The RA-PH domain region of RIAM functions as a single structural unit and mediates translocation of RIAM to the plasma membrane upon T cell activation. Previously, we determined that RIAM deficiency results in impaired activation of PLC-γ1 in spite of the formation of the PLC-γ1-SLP-76-LAT complex, suggesting perhaps somewhat paradoxically, that PLC-γ1-SLP-76-LAT signalosome is not sufficient to mediate distal signaling in the absence of RIAM. This observation indicated that RIAM mediates its effects at a level distal to SLP-76-LAT or through a signaling pathway parallel but distinct from SLP-76-Gads-LAT. Here we investigated whether RIAM forms a signalosome parallel to PLC-γ1-SLP-76-Gads and whether such pathway might be involved in the activation of PLC-γ1. Using primary T lymphocytes and Jurkat T cells stimulated via TCR/CD3 and CD28 we determined that RIAM constitutively interacted with Gads as determined by immunoprecipitation with RIAM-specific antibody followed by Gads immunoblot. To determine whether the interaction between RIAM and Gads was direct, we employed an in vitro protein association assay. Glutathione S-transferase (GST) and GST-fusion protein of Gads were coupled to glutathione-sepharose and incubated with [35S]methionine-labeled RIAM or luciferase, as negative control. Gads bound to [35S]methionine-labeled RIAM indicating that RIAM interacts directly with Gads. We further examined domain-specific interaction of RIAM with endogenous Gads using GST fusion proteins of RIAM. We determined a constitutive interaction between Gads and GST fusion proteins of full-length RIAM or C-terminus region of RIAM. Although a number of tyrosine phosphorylated proteins were associated with the RIAM-Gads complex upon T cell activation, LAT was not detected among the components of this complex as determined by immunoblot with anti-phosphotyrosine-specific or LAT-specific antibodies. Using a GST fusion protein of the RA-PH domain of RIAM we determined that, surprisingly, Gads displayed activation-dependent interaction with the RA-PH domain, which mediates the recruitment of RIAM to the plasma membrane upon T cell activation. Furthermore, in addition to Gads, SLP-76 and PLC-γ1 were recruited to the RA-PH domain of RIAM in activated T cells. To determine whether RIAM and Gads had a synergistic effect on IL-2 transcription, we performed luciferase-based reporter assays using a reporter construct driven by the entire IL-2 promoter or by NFAT binding sequences. We found that RIAM and Gads had a synergistic effect on IL-2 and on NFAT-mediated transcriptional activation, which depends on PLC-γ1. Thus, via its C-terminus region, RIAM directly and constitutively interacts with Gads. In addition, via its RA-PH domain, RIAM mediates an activation-dependent interaction with Gads and serves as a docking site recruiting the PLC-γ1-SLP-76-Gads complex to the plasma membrane in a LAT-independent manner. These findings indicate a crosstalk between RIAM and SLP-76 in the activation of PLC-γ1 and reveal a previously unidentified, alternative signaling pathway leading to Gads-SLP-76 recruitment to the plasma membrane of activated T cells in a LAT-independent manner. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Abraham L Bayer ◽  
Njabulo Ngwenyama ◽  
Sasha Smolgovsky ◽  
Ana Hernández Martínez ◽  
Kuljeet Kaur ◽  
...  

Background: Heart failure (HF) is a leading cause of death worldwide, associated with cardiac and systemic inflammation. However, no anti-inflammatory therapies have shown success thus far. Damage associated molecular patterns (DAMPs) released in the heart can activate myeloid cells to promote antigen presentation to T-cells, which infiltrate the heart and participate in adverse cardiac remodeling. DAMP signaling converges onto the adaptor protein “Myeloid differentiation primary response 88” (MyD88). DAMP receptors and MyD88 are also expressed in T-cells, but their role in T-cell activation is unclear, and is unknown in the context of HF. We hypothesized that T-cell recognition of DAMPs through MyD88 causes “bystander activation” of T-cells and contributes to cardiac pathology in HF. Methods and Results: We reconstituted Tcra -/- mice, normally protected from HF, with WT or Myd88 -/- Type 1 helper T-cells (Th1) in the onset of transaortic constriction (TAC), a well-established model of HF. Surprisingly, we found that mice given Myd88 -/- Th1 cells exhibited significantly higher levels of cardiac T-cell infiltration, more severe fibrosis, and lower fractional shortening than mice given WT Th1 cells. We found that WT and Myd88 -/- Th1 cells had similar levels of IFNγ and Tbx21 by intracellular staining and RT-qPCR, indicating that MyD88 does not alter Th1 differentiation. However, Myd88 -/- Th1 cells secreted higher levels of IL-2 and TNFα, suggesting enhanced proliferative and pro-inflammatory effector function. We performed viability studies using live cell microscopy and measuring propidium iodide incorporation in real time, as well as by flow cytometry, and found that Myd88 -/- Th1 cells have a survival advantage compared to WT Th1 cells. Moreover, we found that Myd88 -/- Th1 cells exhibited higher levels of adhesion to ICAM-1 and VCAM-1, protein ligands involved in T-cell recruitment, compared to WT Th1 cells when perfused under conditions of shear flow. Conclusion: Together, these data demonstrate that T-cell MyD88 limits T-cell mediated pathology in HF by modulating Th1 effector function, survival, and adhesion ability. We identify novel role for T-cell MyD88 in cardiac inflammation that may be modulated in HF.


2017 ◽  
Vol 37 (11) ◽  
Author(s):  
Johannes Breuning ◽  
Marion H. Brown

ABSTRACT The cell surface receptor CD6 regulates T cell activation in both activating and inhibitory manners. The adaptor protein SLP-76 is recruited to the phosphorylated CD6 cytoplasmic Y662 residue during T cell activation, providing an activating signal to T cells. In this study, a biochemical approach identified the SH2 domain-containing adaptor protein GADS as the dominant interaction partner for the CD6 cytoplasmic Y629 residue. Functional experiments in human Jurkat and primary T cells showed that both mutations Y629F and Y662F abolished costimulation by CD6. In addition, a restraint on T cell activation by CD6 was revealed in primary T cells expressing CD6 mutated at Y629 and Y662. These data are consistent with a model in which bivalent recruitment of a GADS/SLP-76 complex is required for costimulation by CD6.


2005 ◽  
Vol 25 (2) ◽  
pp. 554-562 ◽  
Author(s):  
Bok Yun Kang ◽  
Shi-Chuen Miaw ◽  
I-Cheng Ho

ABSTRACT ROG, a transcriptional repressor, is a direct target gene of NF-AT and a putative negative regulator of T-cell activation. In addition, overexpression of ROG suppresses the activity of GATA-3, implying a role of ROG in the differentiation and function of Th cells. Despite these observations, the function of ROG has yet to be confirmed by loss-of-function approaches. Here we report that ROG-deficient T cells are hypersensitive to anti-CD3 stimulation and produce more interleukin-2 (IL-2) due to enhanced NF-κB activity. ROG-deficient dendritic cells also produce more IL-12p40, another NF-κB target gene. However, ROG-deficient Th cells are capable of differentiating into Th1 and Th2 cells, and ROG-deficient mice have no defect in mounting appropriate Th immune responses in vivo. Thus, ROG is dispensable for the differentiation and function of Th cells but serves as a mediator of NF-AT-initiated suppression of NF-κB. Its mechanism of action and its expression pattern are distinct from those of other transcription factors negatively regulating the activation of T cells.


Blood ◽  
2006 ◽  
Vol 109 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Jun-ichiro Suzuki ◽  
Sho Yamasaki ◽  
Jennifer Wu ◽  
Gary A. Koretzky ◽  
Takashi Saito

Abstract The dynamic rearrangement of the actin cytoskeleton plays critical roles in T-cell receptor (TCR) signaling and immunological synapse (IS) formation in T cells. Following actin rearrangement in T cells upon TCR stimulation, we found a unique ring-shaped reorganization of actin called the “actin cloud,” which was specifically induced by outside-in signals through lymphocyte function–associated antigen-1 (LFA-1) engagement. In T-cell–antigen-presenting cell (APC) interactions, the actin cloud is generated in the absence of antigen and localized at the center of the T-cell–APC interface, where it accumulates LFA-1 and tyrosine-phosphorylated proteins. The LFA-1–induced actin cloud formation involves ADAP (adhesion- and degranulation-promoting adaptor protein) phosphorylation, LFA-1/ADAP assembly, and c-Jun N-terminal kinase (JNK) activation, and occurs independent of TCR and its proximal signaling. The formation of the actin cloud lowers the threshold for subsequent T-cell activation. Thus, the actin cloud induced by LFA-1 engagement may serve as a possible platform for LFA-1–mediated costimulatory function for T-cell activation.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3139-3146 ◽  
Author(s):  
Matilde León-Ponte, ◽  
Gerard P. Ahern ◽  
Peta J. O'Connell

Abstract Although typically considered a neurotransmitter, there is substantial evidence that serotonin (5-HT) plays an important role in the pathogenesis of inflammatory disorders. Despite these findings, the precise role of 5-HT in modulating immune function, particularly T-cell function, remains elusive. We report that naive T cells predominantly express the type 7 5-HT receptor (5-HTR), and expression of this protein is substantially enhanced on T-cell activation. In addition, T-cell activation leads to expression of the 5-HT1B and 5-HT2A receptors. Significantly, exogenous 5-HT induces rapid phosphorylation of extracellular signal-regulated kinase-1 and -2 (ERK1/2) and IκBα in naive T cells. 5-HT–induced activation of ERK1/2 and NFκB is inhibited by preincubation with a specific 5-HT7 receptor antagonist. Thus, 5-HT signaling via the 5-HT7 receptor may contribute to early T-cell activation. In turn, 5-HT synthesized by T cells may act as an autocrine factor. Consistent with this hypothesis, we found that inhibition of 5-HT synthesis with parachlorophenylalanine (PCPA) impairs T-cell activation and proliferation. Combined, these data demonstrate a fundamental role for 5-HT as an intrinsic cofactor in T-cell activation and function and suggest an alternative mechanism through which immune function may be regulated by indoleamine 2,3-dioxygenase–mediated catabolism of tryptophan.


2009 ◽  
Vol 185 (3) ◽  
pp. 521-534 ◽  
Author(s):  
Yoshihisa Kaizuka ◽  
Adam D. Douglass ◽  
Santosh Vardhana ◽  
Michael L. Dustin ◽  
Ronald D. Vale

The interaction between a T cell and an antigen-presenting cell (APC) can trigger a signaling response that leads to T cell activation. Prior studies have shown that ligation of the T cell receptor (TCR) triggers a signaling cascade that proceeds through the coalescence of TCR and various signaling molecules (e.g., the kinase Lck and adaptor protein LAT [linker for T cell activation]) into microdomains on the plasma membrane. In this study, we investigated another ligand–receptor interaction (CD58–CD2) that facilities T cell activation using a model system consisting of Jurkat T cells interacting with a planar lipid bilayer that mimics an APC. We show that the binding of CD58 to CD2, in the absence of TCR activation, also induces signaling through the actin-dependent coalescence of signaling molecules (including TCR-ζ chain, Lck, and LAT) into microdomains. When simultaneously activated, TCR and CD2 initially colocalize in small microdomains but then partition into separate zones; this spatial segregation may enable the two receptors to enhance signaling synergistically. Our results show that two structurally distinct receptors both induce a rapid spatial reorganization of molecules in the plasma membrane, suggesting a model for how local increases in the concentration of signaling molecules can trigger T cell signaling.


Sign in / Sign up

Export Citation Format

Share Document