scholarly journals Experimental recommendations for estimating lower extremity loading based on joint and activity

2021 ◽  
Author(s):  
Todd J Hullfish ◽  
John F Drazan ◽  
Josh R Baxter

Researchers often estimate joint loading using musculoskeletal models to solve the inverse dynamics problem. This approach is powerful because it can be done non-invasively, however, it relies on assumptions and physical measurements that are prone to measurement error. The purpose of this study was to determine the impact of these errors - specifically, segment mass and shear ground reaction force - have on analyzing joint loads during activities of daily living. We preformed traditional marker-based motion capture analysis on 8 healthy adults while they completed a battery of exercises on 6 degree of freedom force plates. We then scaled the mass of each segment as well as the shear component of the ground reaction force in 5% increments between 0 and 200% and iteratively performed inverse dynamics calculations, resulting in 1,681 mass-shear combinations per activity. We compared the peak joint moments of the ankle, knee, and hip at each mass-shear combination to the 100% mass and 100% shear combination to determine the percent error. We found that the ankle was most resistant to changes in both mass and shear and the knee was resistant to changes in mass while the hip was sensitive to changes in both mass and shear. These results can help guide researchers who are pursuing lower-cost or more convenient data collection setups.

2019 ◽  
Vol 47 (4) ◽  
pp. 968-973 ◽  
Author(s):  
J.J. Hannigan ◽  
Christine D. Pollard

Background: A recent study suggested that maximal running shoes may increase the impact force and loading rate of the vertical ground-reaction force during running. It is currently unknown whether runners will adapt to decrease the impact force and loading rate over time. Purpose: To compare the vertical ground-reaction force and ankle kinematics between maximal and traditional shoes before and after a 6-week acclimation period to the maximal shoe. Study Design: Controlled laboratory study. Methods: Participants ran in a traditional running shoe and a maximal running shoe during 2 testing sessions 6 weeks apart. During each session, 3-dimensional kinematics and kinetics were collected during overground running. Variables of interest included the loading rate, impact peak, and active peak of the vertical ground-reaction force, as well as eversion and dorsiflexion kinematics. Two-way repeated measures analyses of variance compared data within participants. Results: No significant differences were observed in any biomechanical variable between time points. The loading rate and impact peak were higher in the maximal shoe. Runners were still everted at toe-off and landed with less dorsiflexion, on average, in the maximal shoe. Conclusion: Greater loading rates and impact forces were previously found in maximal running shoes, which may indicate an increased risk of injury. The eversion mechanics observed in the maximal shoes may also increase the risk of injury. A 6-week transition to maximal shoes did not significantly change any of these measures. Clinical Relevance: Maximal running shoes are becoming very popular and may be considered a treatment option for some injuries. The biomechanical results of this study do not support the use of maximal running shoes. However, the effect of these shoes on pain and injury rates is unknown.


2015 ◽  
Vol 9 (1) ◽  
pp. 103-107 ◽  
Author(s):  
L Yin ◽  
D Sun ◽  
Q.C Mei ◽  
Y.D Gu ◽  
J.S Baker ◽  
...  

Large number of studies showed that landing with great impact forces may be a risk factor for knee injuries. The purpose of this study was to illustrate the different landing loads to lower extremity of both genders and examine the relationships among selected lower extremity kinematics and kinetics during the landing of a stop-jump task. A total of 35 male and 35 female healthy subjects were recruited in this study. Each subject executed five experiment actions. Lower extremity kinematics and kinetics were synchronously acquired. The comparison of lower extremity kinematics for different genders showed significant difference. The knee and hip maximum flexion angle, peak ground reaction force and peak knee extension moment have significantly decreased during the landing of the stop-jump task among the female subjects. The hip flexion angle at the initial foot contact phase showed significant correlation with peak ground reaction force during landing of the stop-jump task (r=-0.927, p<0.001). The knee flexion angle at the initial foot contact phase had significant correlation with peak ground reaction force and vertical ground reaction forces during landing of the stop-jump task (r=-0.908, p<0.001; r=0.812, P=0.002). A large hip and knee flexion angles at the initial foot contact with the ground did not necessarily reduce the impact force during landing, but active hip and knee flexion motions did. The hip and knee flexion motion of landing was an important technical factor that affects anterior cruciate ligament (ACL) loading during the landing of the stop-jump task.


2004 ◽  
Vol 97 (6) ◽  
pp. 2266-2274 ◽  
Author(s):  
Andrew A. Biewener ◽  
Claire T. Farley ◽  
Thomas J. Roberts ◽  
Marco Temaner

Muscular forces generated during locomotion depend on an animal's speed, gait, and size and underlie the energy demand to power locomotion. Changes in limb posture affect muscle forces by altering the mechanical advantage of the ground reaction force ( R) and therefore the effective mechanical advantage (EMA = r/ R, where r is the muscle mechanical advantage) for muscle force production. We used inverse dynamics based on force plate and kinematic recordings of humans as they walked and ran at steady speeds to examine how changes in muscle EMA affect muscle force-generating requirements at these gaits. We found a 68% decrease in knee extensor EMA when humans changed gait from a walk to a run compared with an 18% increase in hip extensor EMA and a 23% increase in ankle extensor EMA. Whereas the knee joint was extended (154–176°) during much of the support phase of walking, its flexed position (134–164°) during running resulted in a 5.2-fold increase in quadriceps impulse (time-integrated force during stance) needed to support body weight on the ground. This increase was associated with a 4.9-fold increase in the ground reaction force moment about the knee. In contrast, extensor impulse decreased 37% ( P < 0.05) at the hip and did not change at the ankle when subjects switched from a walk to a run. We conclude that the decrease in limb mechanical advantage (mean limb extensor EMA) and increase in knee extensor impulse during running likely contribute to the higher metabolic cost of transport in running than in walking. The low mechanical advantage in running humans may also explain previous observations of a greater metabolic cost of transport for running humans compared with trotting and galloping quadrupeds of similar size.


2014 ◽  
Vol 5 (2) ◽  
pp. 37-52 ◽  
Author(s):  
D. S. Mohan Varma ◽  
S. Sujatha

Abstract. An inverse dynamics model for the single support (SS) phase of gait is developed to study segmental contributions to the ground reaction force (GRF). With segmental orientations as the generalized degrees of freedom (DOF), the acceleration of the body's center-of-mass is expressed analytically as the summation of the weighted kinematics of individual segments. The weighting functions are constants that are functions of the segment masses and center-of-mass distances. Using kinematic and anthropometric data from literature as inputs, and using the roll-over-shape (ROS) to model the foot-ground interaction, GRF obtained from the inverse model are compared with measured GRF data from literature. The choice of the generalized coordinates and mathematical form of the model provides a means to weigh individual segment contributions, simplify models and choose more kinetically accurate inverse dynamics models. For the kinematic data used, an anthropomorphic model that includes the frontal plane rotation of the pelvis in addition to the sagittal DOF of the thigh and shank most accurately captures the vertical component of the GRF in the SS phase of walking. Of the two ROS used, the ankle-foot roll-over shape provides a better approximation of the kinetics in the SS phase. The method presented here can be used with additional experimental studies to confirm these results.


Author(s):  
Kuei-Yu Chien ◽  
Wei-Gang Chang ◽  
Wan-Chin Chen ◽  
Rong-Jun Liou

Abstract Background Water jumping exercise is an alternative method to achieve maintenance of bone health and reduce exercise injuries. Clarifying the ground reaction force (GRF) of moderate and high cardiopulmonary exercise intensities for jumping movements can help quantify the impact force during different exercise intensities. Accelerometers have been explored for measuring skeletal mechanical loading by estimating the GRFs. Predictive regression equations for GRF using ACC on land have already been developed and performed outside laboratory settings, whereas a predictive regression equation for GRF in water exercises is not yet established. The purpose of this study was to determine the best accelerometer wear-position for three exercise intensities and develop and validate the ground reaction force (GRF) prediction equation. Methods Twelve healthy women (23.6 ± 1.83 years, 158.2 ± 5.33 cm, 53.1 ± 7.50 kg) were recruited as participants. Triaxial accelerometers were affixed 3 cm above the medial malleolus of the tibia, fifth lumbar vertebra, and seventh cervical vertebra (C7). The countermovement jump (CMJ) cadence started at 80 beats/min and increased by 5 beats per 20 s to reach 50%, 65%, and 80% heart rate reserves, and then participants jumped five more times. One-way repeated analysis of variance was used to determine acceleration differences among wear-positions and exercise intensities. Pearson’s correlation was used to determine the correlation between the acceleration and GRF per body weight on land (GRFVLBW). Backward regression analysis was used to generate GRFVLBW prediction equations from full models with C7 acceleration (C7 ACC), age, percentage of water deep divided by body height (PWDH), and bodyweight as predictors. Paired t-test was used to determine GRFVLBW differences between values from the prediction equation and force plate measurement during validation. Lin’s CCC and Bland–Altman plots were used to determine the agreement between the predicted and force plate-measured GRFVLBW. Results The raw full profile data for the resultant acceleration showed that the acceleration curve of C7 was similar to that of GRFv. The predicted formula was − 1.712 + 0.658 * C7ACC + 0.016 * PWDH + 0.008 * age + 0.003*weight. Lin’s CCC score was 0.7453, with bias of 0.369%. Conclusion The resultant acceleration measured at C7 was identified as the valid estimated GRFVLBW during CMJ in water.


2010 ◽  
Vol 45 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Gaurav Telhan ◽  
Jason R. Franz ◽  
Jay Dicharry ◽  
Robert P. Wilder ◽  
Patrick O. Riley ◽  
...  

Abstract Context: Knowledge of the kinetic changes that occur during sloped running is important in understanding the adaptive gait-control mechanisms at work and can provide additional information about the poorly understood relationship between injury and changes in kinetic forces in the lower extremity. A study of these potential kinetic changes merits consideration, because training and return-to-activity programs are potentially modifiable factors for tissue stress and injury risk. Objective: To contribute further to the understanding of hill running by quantifying the 3-dimensional alterations in joint kinetics during moderately sloped decline, level, and incline running in a group of healthy runners. Design: Crossover study. Setting: Three-dimensional motion analysis laboratory. Patients or Other Participants: Nineteen healthy young runners/joggers (age  =  25.3 ± 2.5 years). Intervention(s): Participants ran at 3.13 m/s on a treadmill under the following 3 different running-surface slope conditions: 4° decline, level, and 4° incline. Main Outcome Measure(s): Lower extremity joint moments and powers and the 3 components of the ground reaction force. Results: Moderate changes in running-surface slope had a minimal effect on ankle, knee, and hip joint kinetics when velocity was held constant. Only changes in knee power absorption (increased with decline-slope running) and hip power (increased generation on incline-slope running and increased absorption on decline-slope running in early stance) were noted. We observed an increase only in the impact peak of the vertical ground reaction force component during decline-slope running, whereas the nonvertical components displayed no differences. Conclusions: Running style modifications associated with running on moderate slopes did not manifest as changes in 3-dimensional joint moments or in the active peaks of the ground reaction force. Our data indicate that running on level and moderately inclined slopes appears to be a safe component of training regimens and return-to-run protocols after injury.


2015 ◽  
Vol 28 (3) ◽  
pp. 459-466
Author(s):  
Giulia Pereira ◽  
Aluísio Otavio Vargas Avila ◽  
Rudnei Palhano

AbstractIntroduction Footwear is no longer just an accessory but also a protection for the musculoskeletal system, and its most important characteristic is comfort.Objectives This study aims to identify and to analyze the vertical ground reaction force in barefoot women and women with unstable shoes.Methodology Five women aged 25 ± 4 years old and mass of 50 ± 7 kg participated in this study. An AMTI force plate was used for data acquisition. The 10 trials for each situation were considered valid where the subject approached the platform with the right foot and at the speed of 4 km/h ± 5%. The instable shoe of this study is used in the practice of physical activity.Results The results showed that the first peak force was higher for the footwear situation, about 5% and significant differences between the barefoot and footwear situation. This significant difference was in the first and second peaks force and in the time of the second peak.Conclusion The values showed that the footwear absorbs approximately 45% of the impact during gait.


2017 ◽  
Vol 23 (3) ◽  
pp. 232-236 ◽  
Author(s):  
Alex Castro ◽  
Márcio Fagundes Goethel ◽  
Arthur Fernandes Gáspari ◽  
Luciano Fernandes Crozara ◽  
Mauro Gonçalves

ABSTRACT Introduction: The jump landing is the leading cause for ankle injuries in basketball. It has been shown that the use of ankle brace is effective to prevent these injuries by increasing the mechanical stability of the ankle at the initial contact of the foot with the ground. Objective: To investigate the effects of ankle brace on the ground reaction force (GRF) during the simulation of a basketball rebound jump. Method: Eleven young male basketball players randomly carried out a simulated basketball rebound jump under two conditions, with and without ankle brace (lace-up). Dynamic parameters of vertical GRF (take-off and landing vertical peaks, time to take-off and landing vertical peaks, take-off impulse peak, impulse at 50 milliseconds of landing, and jump height) and medial-lateral (take-off and landing medial-lateral peaks, and time to reach medial-lateral peaks at take-off and landing) were recorded by force platform during rebound jumps in each tested condition. The comparisons between the tested conditions were performed by paired t test (P<0.05). Results: The use of ankle braces reduced the medial and lateral peaks of the GRF by -15.7% (P=0.035) and -24.9% (P=0.012), respectively, during the landing of the rebound jump. Additionally, wearing the brace did not affect any dynamic parameters of vertical GRF or temporal parameters of the medial-lateral GRF (P>0.05). Conclusion: The use of ankle brace during basketball rebound jumps attenuates the magnitude of medial-lateral GRF on the landing phase, without changing the vertical GRF. This finding indicates that the use of brace increases the medial-lateral mechanical protection by decreasing the shear force exerted on the athlete’s body without change the application of propulsive forces in the take-off and the impact absorption quality in the landing during the basketball rebound jump.


2021 ◽  
Vol 8 (1) ◽  
pp. 17-22
Author(s):  
Ensieh Pourhosaingholi ◽  
◽  
Hassan Saeedi ◽  
Mohammad Kamali ◽  
◽  
...  

Background: Ankle Foot Orthoses (AFOs) are often prescribed in patients with drop foot. The purpose of this study was to investigate the effect of the novel designed storing-restoring hybrid passive AFO versus Posterior Leaf Spring (PLS) AFO on the peak and timing of vertical component of ground reaction force (vGRF) in patients with drop foot. Objectives: the effect of novel designed storing-restoring hybrid passive AFO versus posterior leaf spring AFO on the peak and timing of Vertical Ground Reaction Force (vGRF) in drop foot patients. Methods: Ten adults with drop foot (7 males and 3 females) were included in this study. Then, these patients walked at a self-selected speed with two AFOs. For each trial, the vGRF components were obtained using a Kistler force plate. Results: the Independent t-test results showed a significant increase in the impact force in spring damper AFO than PLS (p<0.001). Significant differences were also found in the first and third peaks of vertical force and time of occurrence as well as the first minimum force and time of occurrence in spring damper than PLS AFO (p<0.001). Conclusion: the novel AFO affects not only the impact force and peak of vGRF but also the timing of these forces. These changes indicate an improvement in the overall performance of the novel AFO.


2014 ◽  
Vol 30 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Timothy C. Sell ◽  
Jonathan S. Akins ◽  
Alexis R. Opp ◽  
Scott M. Lephart

Proximal anterior tibia shear force is a direct loading mechanism of the anterior cruciate ligament (ACL) and is a contributor to ACL strain during injury. Measurement of this force during competition may provide insight into risk factors for ACL injury. Accelerometers may be capable of measuring tibial acceleration during competition. The purpose of this study was to examine the relationship between acceleration measured by a tibia-mounted accelerometer and proximal anterior tibia shear force as measured through inverse dynamics and peak posterior ground reaction forces during two leg stop-jump tasks. Nineteen healthy male subjects performed stop-jump tasks across increasing jump distances. Correlation coefficients were calculated to determine if a relationship exists between accelerometer data and proximal anterior tibia shear force and peak posterior ground reaction force. An analysis of variance was performed to compare these variables across jump distance. Significant correlations were observed between accelerometer data and peak posterior ground reaction force, but none between accelerometer data and proximal anterior tibia shear force. All variables except peak proximal anterior tibia shear force increased significantly as jump distance increased. Overall, results of this study provide initial, positive support for the use of accelerometers as a useful tool for future injury prevention research.


Sign in / Sign up

Export Citation Format

Share Document