scholarly journals Epigenetic predictors of maximum lifespan and other life history traits in mammals

2021 ◽  
Author(s):  
Caesar Z. Li ◽  
Amin Haghani ◽  
Todd R. Robeck ◽  
Diego Villar ◽  
Ake T. Lu ◽  
...  

Maximum lifespan of a species is the oldest that individuals can survive, reflecting the genetic limit of longevity in an ideal environment. Here we report methylation-based models that accurately predict maximum lifespan (r=0.89), gestational time (r=0.96), and age at sexual maturity (r=0.87), using cytosine methylation patterns collected from over 12,000 samples derived from 192 mammalian species. Our epigenetic maximum lifespan predictor corroborated the extended lifespan in growth hormone receptor knockout mice and rapamycin treated mice. Across dog breeds, epigenetic maximum lifespan correlates positively with breed lifespan but negatively with breed size. Lifespan-related cytosines are located in transcriptional regulatory regions, such as bivalent chromatin promoters and polycomb-repressed regions, which were hypomethylated in long-lived species. The epigenetic estimators of maximum lifespan and other life history traits will be useful for characterizing understudied species and for identifying interventions that extend lifespan.

2011 ◽  
Vol 32 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Emel Çakır ◽  
Ufuk Bülbül ◽  
Nurhayat Özdemir ◽  
Bilal Kutrup

AbstractWe examined life-history traits such as population age structure, growth and longevity of Iranian Long-Legged frogs (Rana macrocnemis) from 4 different locations at different altitudes in Turkey by skeletochronology performed on the phalanges. The maximum lifespan was 5 years in Maçka (350 m a.s.l.), 6 years in Hıdırnebi (1430 m a.s.l.), 8 years in Sarıkamış (2276 m a.s.l.) and 10 years in Ovit (2850 m a.s.l.). Age at sexual maturity of both males and females was 2-3 years in the Maçka, Hıdırnebi and Sarıkamış populations, while 3-4 years for males and 3-5 years for females in the Ovit population. In all populations, males and females did not exhibit any differences in terms of mean age and SVL except for Sarıkamı¸s where the males were significantly larger than the females. A positive correlation was observed between age and SVL for both sexes in all populations except for the males of the Maçka population.


Author(s):  
Sean R. Tracey ◽  
Mike A. Steer ◽  
Gretta T. Pecl

Age, growth and maturation of the temperate ‘mini-maximalist’ Idiosepius notoides from Tasmania is described and compared with those of its tropical congener Idiosepius pygmaeus. Using statolith increment analysis, growth of I. notoides was best described by a power curve with a maximum age of 115 days recorded. Males have a shorter lifespan than females, however growth rates were similar between the sexes. Idiosepius notoides grows to a larger size than its tropical counterpart. Onset of maturity in I. notoides occurred at an age of approximately 68 days for males and 88 days for females compared to 45–60 days for I. pygmaeus. Size at onset of sexual maturity was analogous between the two species, with males mature at approximately 6·5 mm mantle length (ML) and females at 14·0 mm ML. Idiosepius notoides, like I. pygmaeus, is a small short-lived sepioid with significant gender dimorphism and the capacity to spawn multiple times throughout its short life. This research supports the concept of similar cephalopod species living longer and growing larger in cooler environments.


1996 ◽  
Vol 351 (1345) ◽  
pp. 1341-1348 ◽  

Several empirical models have attempted to account for the covariation among life history traits observed in a variety of organisms. One of these models, the fast-slow continuum hypothesis, emphasizes the role played by mortality at different stages of the life cycle in shaping the large array of life history variation. Under this scheme, species can be arranged from those suffering high adult mortality levels to those undergoing relatively low adult mortality. This differential mortality is responsible for the evolution of contrasting life histories on either end of the continuum. Species undergoing high adult mortality are expected to have shorter life cycles, faster development rates and higher fecundity than those experiencing lower adult mortality. The theory has proved accurate in describing the evolution of life histories in several animal groups but has previously not been tested in plants. Here we test this theory using demographic information for 83 species of perennial plants. In accordance with the fast-slow continuum, plants undergoing high adult mortality have shorter lifespans and reach sexual maturity at an earlier age. However, demographic traits related to reproduction (the intrinsic rate of natural increase, the net reproductive rate and the average rate of decrease in the intensity of natural selection on fecundity) do not show the covariation expected with longevity, age at first reproducion and life expectancy at sexual maturity. Contrary to the situation in animals, plants with multiple meristems continuously increase their size and, consequently, their fecundity and reproductive value. This may balance the negative effect of mortality on fitness, thus having no apparent effect in the sign of the covariation between these two goups of life history traits.


2010 ◽  
Vol 7 (1) ◽  
pp. 105-107 ◽  
Author(s):  
Yann Voituron ◽  
Michelle de Fraipont ◽  
Julien Issartel ◽  
Olivier Guillaume ◽  
Jean Clobert

Theories of extreme lifespan evolution in vertebrates commonly implicate large size and predator-free environments together with physiological characteristics like low metabolism and high protection against oxidative damages. Here, we show that the ‘human fish’ (olm, Proteus anguinus ), a small cave salamander (weighing 15–20 g), has evolved an extreme life-history strategy with a predicted maximum lifespan of over 100 years, an adult average lifespan of 68.5 years, an age at sexual maturity of 15.6 years and lays, on average, 35 eggs every 12.5 years. Surprisingly, neither its basal metabolism nor antioxidant activities explain why this animal sits as an outlier in the amphibian size/longevity relationship. This species thus raises questions regarding ageing processes and constitutes a promising model for discovering mechanisms preventing senescence in vertebrates.


2014 ◽  
Vol 281 (1782) ◽  
pp. 20132458 ◽  
Author(s):  
Eli M. Swanson ◽  
Ben Dantzer

Despite the diversity of mammalian life histories, persistent patterns of covariation have been identified, such as the ‘fast–slow’ axis of life-history covariation. Smaller species generally exhibit ‘faster’ life histories, developing and reproducing rapidly, but dying young. Hormonal mechanisms with pleiotropic effects may mediate such broad patterns of life-history variation. Insulin-like growth factor 1 (IGF-1) is one such mechanism because heightened IGF-1 activity is related to traits associated with faster life histories, such as increased growth and reproduction, but decreased lifespan. Using comparative methods, we show that among 41 mammalian species, increased plasma IGF-1 concentrations are associated with fast life histories and altricial reproductive patterns. Interspecific path analyses show that the effects of IGF-1 on these broad patterns of life-history variation are through its direct effects on some individual life-history traits (adult body size, growth rate, basal metabolic rate) and through its indirect effects on the remaining life-history traits. Our results suggest that the role of IGF-1 as a mechanism mediating life-history variation is conserved over the evolutionary time period defining mammalian diversification, that hormone–trait linkages can evolve as a unit, and that suites of life-history traits could be adjusted in response to selection through changes in plasma IGF-1.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 676-676
Author(s):  
Amin Haghani ◽  
Steve Horvath

Abstract The comparative cross-species analysis is a powerful tool to resolve the mysteries of evolution and phenotypic disparities among animals. This is the first network analysis of 10,000 DNA methylome data from 176 mammalian species to identify co-methylation modules that relate to individual (age, sex, tissue type) and species characteristics (e.g. phylogenetic order, maximum lifespan, adult weight). The unexpected correlation between DNA methylation and species were sufficiently strong to allow the construction of phyloepigenetic trees that parallel the phylogenetic tree. Weighted correlation network analysis identified 55 distinct co-methylation modules, i.e. sets of highly correlated CpGs. 31 of these modules are readily interpretable in terms of their relationship to age, maximum lifespan, tissue type etc. An age-related module was perturbed by gold standard anti-aging interventions in mice such as caloric restriction or growth hormone receptor knock outs. Our module-based analysis greatly enhances our biological understanding of age-related changes in DNA methylation across many species.


2011 ◽  
Vol 92 (6) ◽  
pp. 1379-1387 ◽  
Author(s):  
P. Henriques ◽  
R. Sousa ◽  
A.R. Pinto ◽  
J. Delgado ◽  
G. Faria ◽  
...  

Life history traits of Patella candei were studied for the first time, including weight versus length relationship, growth, age structure, sexual maturity, recruitment pattern, mortality rates and yield and biomass-per-recruit of an exploited population in Madeira Island, north-eastern Atlantic using monthly length–frequency data from January to December 1999. The growth pattern of P. candei showed positive allometric nature of growth (b > 3, P < 0.05). The estimated growth parameters showed an asymptotic length (L∞) and growth coefficient (K) estimated at 80.81 mm and K at 0.32 year−1 with a growth performance index (φ′) calculated as 3.32 based on the collected data. This species is moderately long-lived reaching up to 9.36 years and achieving sexual maturity at 36.7 mm of shell length. The recruitment pattern was continuous, displaying a major peak event per year, occurring in January (25.12%). The estimated total mortality rate (Z) was 1.79 year−1 while natural mortality rate (M) was 0.55 year−1 and fishing mortality rate (F) was 1.24 year−1. The probability of capture shows that the length at first capture (Lc) was 42.7 mm, the exploitation rate (E) 0.693 and the maximum allowable limit of exploitation (Emax) was 0.779 for the highest yield. The exploitation rate was less than the predicted Emax values, showing that the stock of P. candei was found to be under-exploited in the investigated area; however, its slow growth and long life make it extremely vulnerable to over-exploitation.


Genome ◽  
2005 ◽  
Vol 48 (2) ◽  
pp. 273-278 ◽  
Author(s):  
Serge Morand ◽  
Robert E Ricklefs

Genome size (C value, the haploid DNA content of the nucleus) varies widely among eukaryotes, increasing through duplication or insertion of transposable elements and decreasing through deletions. Here, we investigate relationships between genome size and life-history attributes potentially related to fitness, including body mass, brain mass, gestation time, age at sexual maturity, and longevity, in 42 species of primates. Using multivariate and phylogenetically informed analyses, we show that genome size is unrelated to any of these traits. Genome size exhibits little variation within primates and its evolution does not appear to be correlated with changes in life-history traits. This further indicates that the phenotypic consequences of variation in genome size are dependent on the particular biology of the group in question.Key words: age at maturity, body size, brain mass, C value, genome size, gestation time, life history, primate.


Herpetozoa ◽  
2019 ◽  
Vol 32 ◽  
pp. 159-163
Author(s):  
Elif Yıldırım ◽  
Yusuf Kumlutaş ◽  
Kamil Candan ◽  
Çetin Ilgaz

The life-history traits of the parthenogenetic lizard Darevskiabendimahiensis were studied by skeletochronology in a population inhabiting highlands in Çaldıran, Van, Turkey. Endosteal resorption was observed in 18 specimens (55%). The mean age was 4.91 ± 0.19 SD years. The mean snout-vent length (SVL) was 51.11 ± 1.15 SD mm. The age at sexual maturity was estimated as 3 years. Longevity was 7 years. Snout-vent length and age were positively correlated (Spearman’s correlation; r = 0.797, P = 0.000). The aim of this study is to contribute to the future conservation activities for this endangered species.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Steve Horvath ◽  
Amin Haghani ◽  
Sichong Peng ◽  
Erin N. Hales ◽  
Joseph A. Zoller ◽  
...  

AbstractCytosine methylation patterns have not yet been thoroughly studied in horses. Here, we profile n = 333 samples from 42 horse tissue types at loci that are highly conserved between mammalian species using a custom array (HorvathMammalMethylChip40). Using the blood and liver tissues from horses, we develop five epigenetic aging clocks: a multi-tissue clock, a blood clock, a liver clock and two dual-species clocks that apply to both horses and humans. In addition, using blood methylation data from three additional equid species (plains zebra, Grevy’s zebras and Somali asses), we develop another clock that applies across all equid species. Castration does not significantly impact the epigenetic aging rate of blood or liver samples from horses. Methylation and RNA data from the same tissues define the relationship between methylation and RNA expression across horse tissues. We expect that the multi-tissue atlas will become a valuable resource.


Sign in / Sign up

Export Citation Format

Share Document