scholarly journals NAP1L1 and NAP1L4 binding to Hypervariable Domain of Chikungunya Virus nsP3 Protein is bivalent and requires phosphorylation

2021 ◽  
Author(s):  
Francisco Dominguez ◽  
Nikita Shiliaev ◽  
Tetyana Lukash ◽  
Peter Agback ◽  
Oksana Palchevska ◽  
...  

Chikungunya virus (CHIKV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. Within the last two decades, CHIKV has expanded its presence to both hemispheres and is currently circulating in both Old and New Worlds. Despite the severity and persistence of the arthritis it causes in humans, no approved vaccines or therapeutic means have been developed for CHIKV infection. Replication of alphaviruses, including CHIKV, is determined not only by their nonstructural proteins, but also by a wide range of host factors, which are indispensable components of viral replication complexes (vRCs). Alphavirus nsP3s contain hypervariable domains (HVDs), which encode multiple motifs that drive recruitment of cell- and virus-specific host proteins into vRCs. Our previous data suggested that NAP1 family members are a group of host factors that may interact with CHIKV nsP3 HVD. In this study, we performed a detailed investigation of the NAP1 function in CHIKV replication in vertebrate cells. Our data demonstrate that i) the NAP1-HVD interactions have strong stimulatory effects on CHIKV replication; ii) both NAP1L1 and NAP1L4 interact with the CHIKV HVD; iii) NAP1 family members interact with two motifs, which are located upstream and downstream of the G3BP-binding motifs of CHIKV HVD; iv) NAP1 proteins interact only with a phosphorylated form of CHIKV HVD and HVD phosphorylation is mediated by CK2 kinase; v) NAP1 and other families of host factors redundantly promote CHIKV replication and their bindings have additive stimulatory effects on viral replication.

2021 ◽  
Author(s):  
Francisco Dominguez ◽  
Nikita Shiliaev ◽  
Tetyana Lukash ◽  
Peter Agback ◽  
Oksana Palchevska ◽  
...  

Chikungunya virus (CHIKV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. Within the last two decades, CHIKV has expanded its presence to both hemispheres and is currently circulating in both Old and New Worlds. Despite the severity and persistence of the arthritis it causes in humans, no approved vaccines or therapeutic means have been developed for CHIKV infection. Replication of alphaviruses, including CHIKV, is determined not only by their nonstructural proteins, but also by a wide range of host factors, which are indispensable components of viral replication complexes (vRCs). Alphavirus nsP3s contain hypervariable domains (HVDs), which encode multiple motifs that drive recruitment of cell- and virus-specific host proteins into vRCs. Our previous data suggested that NAP1 family members are a group of host factors that may interact with CHIKV nsP3 HVD. In this study, we performed a detailed investigation of the NAP1 function in CHIKV replication in vertebrate cells. Our data demonstrate that i) the NAP1-HVD interactions have strong stimulatory effects on CHIKV replication; ii) both NAP1L1 and NAP1L4 interact with the CHIKV HVD; iii) NAP1 family members interact with two motifs, which are located upstream and downstream of the G3BP-binding motifs of CHIKV HVD; iv) NAP1 proteins interact only with a phosphorylated form of CHIKV HVD and HVD phosphorylation is mediated by CK2 kinase; v) NAP1 and other families of host factors redundantly promote CHIKV replication and their bindings have additive stimulatory effects on viral replication. IMPORTANCE Cellular proteins play critical roles in the assembly of alphavirus replication complexes (vRCs). Their recruitment is determined by the viral nonstructural protein 3 (nsP3). This protein contains a long, disordered hypervariable domain (HVD), which encodes virus-specific combinations of short linear motifs interacting with host factors during vRC assembly. Our study defined the binding mechanism of NAP1 family members to CHIKV HVD and demonstrated a stimulatory effect of this interaction on viral replication. We showed that interaction with NAP1L1 is mediated by two HVD motifs and requires phosphorylation of HVD by CK2 kinase. Based on the accumulated data, we present a map of the binding motifs of the critical host factors currently known to interact with CHIKV HVD. It can be used to manipulate cell specificity of viral replication and pathogenesis, and to develop a new generation of vaccine candidates.


2020 ◽  
Vol 95 (1) ◽  
Author(s):  
Tetyana Lukash ◽  
Tatiana Agback ◽  
Francisco Dominguez ◽  
Nikita Shiliaev ◽  
Chetan Meshram ◽  
...  

ABSTRACT Decades of insufficient control have resulted in unprecedented spread of chikungunya virus (CHIKV) around the globe, and millions have suffered from the highly debilitating disease. Nevertheless, the current understanding of CHIKV-host interactions and adaptability of the virus to replication in mosquitoes and mammalian hosts is still elusive. Our new study shows that four-and-a-half LIM domain protein (FHL1) is one of the host factors that interact with the hypervariable domain (HVD) of CHIKV nsP3. Unlike G3BPs, FHL1 is not a prerequisite of CHIKV replication, and many commonly used cell lines do not express FHL1. However, its expression has a detectable stimulatory effect(s) on CHIKV replication, and Fhl1 knockout (KO) cell lines demonstrate slower infection spread. Nuclear magnetic resonance (NMR)-based studies revealed that the binding site of FHL1 in CHIKV nsP3 HVD overlaps that of another proviral host factor, CD2AP. The structural data also demonstrated that FHL1-HVD interaction is mostly determined by the LIM1 domain of FHL1. However, it does not mirror binding of the entire protein, suggesting that other LIM domains are involved. In agreement with previously published data, our biological experiments showed that interactions of CHIKV HVD with CD2AP and FHL1 have additive effects on the efficiency of CHIKV replication. This study shows that CHIKV mutants with extensive modifications of FHL1- or both FHL1- and CD2AP-binding sites remain viable and develop spreading infection in multiple cell types. Our study also demonstrated that other members of the FHL family can bind to CHIKV HVD and thus may be involved in viral replication. IMPORTANCE Replication of chikungunya virus (CHIKV) is determined by a wide range of host factors. Previously, we have demonstrated that the hypervariable domain (HVD) of CHIKV nsP3 contains linear motifs that recruit defined families of host proteins into formation of functional viral replication complexes. Now, using NMR-based structural and biological approaches, we have characterized the binding site of the cellular FHL1 protein in CHIKV HVD and defined the biological significance of this interaction. In contrast to previously described binding of G3BP to CHIKV HVD, the FHL1-HVD interaction was found to not be a prerequisite of viral replication. However, the presence of FHL1 has a stimulatory effect on CHIKV infectivity and, subsequently, the infection spread. FHL1 and CD2AP proteins were found to have overlapping binding sites in CHIKV HVD and additive proviral functions. Elimination of the FHL1-binding site in the nsP3 HVD can be used for the development of stable, attenuated vaccine candidates.


2020 ◽  
Author(s):  
Tetyana Lukash ◽  
Tatiana Agback ◽  
Francisco Dominguez ◽  
Nikita Shiliaev ◽  
Chetan Meshram ◽  
...  

ABSTRACTDecades of insufficient control resulted in unprecedented spread of chikungunya virus (CHIKV) around the globe and millions already suffered from the highly debilitating disease. Nevertheless, the current understanding of CHIKV-host interactions and adaptability of the virus to replication in mosquitoes and mammalian hosts is still elusive. Our new study shows that four-and-a-half LIM domain protein (FHL1) is one of the host factors that interact with hypervariable domain (HVD) of CHIKV nsP3. Unlike G3BPs, FHL1 is not a pre-requisite of CHIKV replication, and many commonly used cell lines do not express FHL1. However, its expression has detectable stimulatory effect(s) on CHIKV replication, and the Fhl1 KO cell lines demonstrate slower infection spread. The NMR-based studies revealed that the binding site of FHL1 in CHIKV nsP3 HVD overlaps with that of another pro-viral host factor, CD2AP. The structural data also demonstrated that FHL1-HVD interaction is mostly determined by LIM1 domain of FHL1. However, it does not mirror binding of the entire protein, suggesting that other LIM domains are involved. In agreement with previously published data, our biological experiments showed that interactions of CHIKV HVD with CD2AP and FHL1 have additive positive effects on the efficiency of CHIKV replication. This study shows that CHIKV mutants with extensive modifications of FHL1- or both FHL1- and CD2AP- binding sites remain viable and develop spreading infection in multiple cell types. Thus, such modifications of HVD may improve live CHIKV vaccine candidates in terms of their safety and stability of the attenuated phenotype.IMPORTANCEReplication of chikungunya virus (CHIKV) is determined by a wide range of host factors. Previously, we have demonstrated that the hypervariable domain (HVD) of CHIKV nsP3 protein contains linear motifs that recruit defined families of host proteins into formation of functional viral replication complexes. Now, using NMR-based structural and biological approaches, we have characterized the binding site of cellular FHL1 protein in CHIKV HVD and defined the biological significance of this interaction. In contrast to previously described binding of G3BP to CHIKV HVD, the FHL1-HVD interaction was found to not be a prerequisite of viral replication. However, the presence of FHL1 has a stimulatory effect on CHIKV infectivity and subsequently, the infection spread. FHL1 and CD2AP proteins were found to have overlapping binding sites in CHIKV HVD and additive pro-viral functions. Elimination of FHL1-binding site in nsP3 HVD can be used for the development of stable, live attenuated vaccine candidates.


2021 ◽  
Vol 9 (5) ◽  
pp. 899
Author(s):  
Anthony Torres-Ruesta ◽  
Rhonda Sin-Ling Chee ◽  
Lisa F.P. Ng

Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Emily E. Ackerman ◽  
Eiryo Kawakami ◽  
Manami Katoh ◽  
Tokiko Watanabe ◽  
Shinji Watanabe ◽  
...  

ABSTRACTThe positions of host factors required for viral replication within a human protein-protein interaction (PPI) network can be exploited to identify drug targets that are robust to drug-mediated selective pressure. Host factors can physically interact with viral proteins, be a component of virus-regulated pathways (where proteins do not interact with viral proteins), or be required for viral replication but unregulated by viruses. Here, we demonstrate a method of combining human PPI networks with virus-host PPI data to improve antiviral drug discovery for influenza viruses by identifying target host proteins. Analysis shows that influenza virus proteins physically interact with host proteins in network positions significant for information flow, even after the removal of known abundance-degree bias within PPI data. We have isolated a subnetwork of the human PPI network that connects virus-interacting host proteins to host factors that are important for influenza virus replication without physically interacting with viral proteins. The subnetwork is enriched for signaling and immune processes distinct from those associated with virus-interacting proteins. Selecting proteins based on subnetwork topology, we performed an siRNA screen to determine whether the subnetwork was enriched for virus replication host factors and whether network position within the subnetwork offers an advantage in prioritization of drug targets to control influenza virus replication. We found that the subnetwork is highly enriched for target host proteins—more so than the set of host factors that physically interact with viral proteins. Our findings demonstrate that network positions are a powerful predictor to guide antiviral drug candidate prioritization.IMPORTANCEIntegrating virus-host interactions with host protein-protein interactions, we have created a method using these established network practices to identify host factors (i.e., proteins) that are likely candidates for antiviral drug targeting. We demonstrate that interaction cascades between host proteins that directly interact with viral proteins and host factors that are important to influenza virus replication are enriched for signaling and immune processes. Additionally, we show that host proteins that interact with viral proteins are in network locations of power. Finally, we demonstrate a new network methodology to predict novel host factors and validate predictions with an siRNA screen. Our results show that integrating virus-host proteins interactions is useful in the identification of antiviral drug target candidates.


2021 ◽  
Vol 95 (9) ◽  
Author(s):  
Mona Teppor ◽  
Eva Žusinaite ◽  
Andres Merits

ABSTRACT Chikungunya virus (CHIKV, family Togaviridae) is a mosquito-transmitted alphavirus. The positive-sense RNA genome of CHIKV encodes four nonstructural proteins (nsP1 to nsP4) that are virus-specific subunits of the RNA replicase. Among nsP functions, those of nsP3 are the least understood. The C-terminal hypervariable domain (HVD) in nsP3 is disordered and serves as a platform for interactions with multiple host proteins. For Sindbis virus (SINV) and Semliki Forest virus (SFV), the nsP3 HVD has been shown to be phosphorylated. Deletion of phosphorylated regions has a mild effect on the growth of SFV and SINV in vertebrate cells. Using radiolabeling, we demonstrated that nsP3 in CHIKV and o’nyong-nyong virus is also phosphorylated. We showed that the phosphorylated residues in CHIKV nsP3 are not clustered at the beginning of the HVD. The substitution of 20 Ser/Thr residues located in the N-terminal half of the HVD or 26 Ser/Thr residues located in its C-terminal half with Ala residues reduced the activity of the CHIKV replicase and the infectivity of CHIKV in mammalian cells. Furthermore, the substitution of all 46 potentially phosphorylated residues resulted in the complete loss of viral RNA synthesis and infectivity. The mutations did not affect the interaction of the HVD in nsP3 with the host G3BP1 protein; interactions with CD2AP, BIN1, and FHL1 proteins were significantly reduced but not abolished. Thus, CHIKV differs from SFV and SINV both in the location of the phosphorylated residues in the HVD in nsP3 and, significantly, in their effect on replicase activity and virus infectivity. IMPORTANCE CHIKV outbreaks have affected millions of people, creating a need for the development of antiviral approaches. nsP3 is a component of the CHIKV RNA replicase and is involved in interactions with host proteins and signaling cascades. Phosphorylation of the HVD in nsP3 is important for the virulent alphavirus phenotype. Here, we demonstrate that nsP3 in CHIKV is phosphorylated and that the phosphorylation sites in the HVD are distributed in a unique pattern. Furthermore, the abrogation of some of the phosphorylation sites results in the attenuation of CHIKV, while abolishing all the phosphorylation sites completely blocked its replicase activity. Thus, the phosphorylation of nsP3 and/or the phosphorylation sites in nsP3 have a major impact on CHIKV infectivity. Therefore, they represent promising targets for antiviral compounds and CHIKV attenuation. In addition, this new information offers valuable insight into the vast network of virus-host interactions.


Author(s):  
Saikat De ◽  
Prabhudutta Mamidi ◽  
Soumyajit Ghosh ◽  
Supriya Suman Keshry ◽  
Chandan Mahish ◽  
...  

Chikungunya virus (CHIKV) has re-emerged as a global public health threat. The inflammatory pathways of RAS and PPAR-γ are usually involved in viral infections. Thus, Telmisartan (TM) with known capacity to block AT1 receptor and activate PPAR-γ, was investigated against CHIKV. The anti-CHIKV effect of TM was investigated in vitro (Vero, RAW 264.7 cells and hPBMCs) and in vivo (C57BL/6 mice). TM was found to abrogate CHIKV infection efficiently (IC50 of 15.34-20.89μM in the Vero and RAW 264.7 cells respectively). Viral RNA and proteins were reduced remarkably. Additionally, TM interfered in the early and late stages of CHIKV life cycle with efficacy in both pre and post-treatment assay. Moreover, the agonist of AT1 receptor and antagonist of PPAR-γ increased CHIKV infection suggesting TM’s anti-viral potential by modulating host factors. Besides, reduced activation of all major MAPKs, NF-κB (p65) and cytokines by TM through the inflammatory axis supported the fact that the anti-CHIKV efficacy of TM is partly mediated through the AT1/PPAR-γ/MAPKs pathways. Interestingly, at the human equivalent dose, TM abrogated CHIKV infection and inflammation significantly leading to reduced clinical score and complete survival of C57BL/6 mice. Additionally, TM reduced infection in hPBMC derived monocyte-macrophage populations in vitro . Hence, TM was found to reduce CHIKV infection by targeting both viral and host factors. Considering its safety and in vivo efficacy, it can be a suitable candidate in future for repurposing against CHIKV.


2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Chetan D. Meshram ◽  
Nikita Shiliaev ◽  
Elena I. Frolova ◽  
Ilya Frolov

ABSTRACT Eastern equine encephalitis virus (EEEV) is the most pathogenic member of the Alphavirus genus in the Togaviridae family. This virus continues to circulate in the New World and has a potential for deliberate use as a bioweapon. Despite the public health threat, to date no attenuated EEEV variants have been applied as live EEEV vaccines. Our previous studies demonstrated the critical function of the hypervariable domain (HVD) in EEEV nsP3 for the assembly of viral replication complexes (vRCs). EEEV HVD contains short linear motifs that recruit host proteins required for vRC formation and function. In this study, we developed a set of EEEV mutants that contained combinations of deletions in nsP3 HVD and clustered mutations in capsid protein, and tested the effects of these modifications on EEEV infection in vivo. These mutations had cumulative negative effects on viral ability to induce meningoencephalitis. The deletions of two critical motifs, which interact with the members of cellular FXR and G3BP protein families, made EEEV cease to be neurovirulent. The additional clustered mutations in capsid protein, which affect its ability to induce transcriptional shutoff, diminished EEEV’s ability to develop viremia. Most notably, despite the inability to induce detectable disease, the designed EEEV mutants remained highly immunogenic and, after a single dose, protected mice against subsequent infection with wild-type (wt) EEEV. Thus, alterations of interactions of EEEV HVD and likely HVDs of other alphaviruses with host factors represent an important direction for development of highly attenuated viruses that can be applied as live vaccines. IMPORTANCE Hypervariable domains (HVDs) of alphavirus nsP3 proteins recruit host proteins into viral replication complexes. The sets of HVD-binding host factors are specific for each alphavirus, and we have previously identified those specific for EEEV. The results of this study demonstrate that the deletions of the binding sites of the G3BP and FXR protein families in the nsP3 HVD of EEEV make the virus avirulent for mice. Mutations in the nuclear localization signal in EEEV capsid protein have an additional negative effect on viral replication in vivo. Despite the inability to cause a detectable disease, the double HVD and triple HVD/capsid mutants induce high levels of neutralizing antibodies. Single immunization protects mice against infection with the highly pathogenic North American strain of EEEV. High safety, the inability to revert to wild-type phenotype, and high immunogenicity make the designed mutants attractive vaccine candidates for EEEV infection.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Chetan D. Meshram ◽  
Peter Agback ◽  
Nikita Shiliaev ◽  
Nadya Urakova ◽  
James A. Mobley ◽  
...  

ABSTRACTAlphaviruses are widely distributed in both hemispheres and circulate between mosquitoes and amplifying vertebrate hosts. Geographically separated alphaviruses have adapted to replication in particular organisms. The accumulating data suggest that this adaptation is determined not only by changes in their glycoproteins but also by the amino acid sequence of the hypervariable domain (HVD) of the alphavirus nsP3 protein. We performed a detailed investigation of chikungunya virus (CHIKV) nsP3 HVD interactions with host factors and their roles in viral replication in vertebrate and mosquito cells. The results demonstrate that CHIKV HVD is intrinsically disordered and binds several distinctive cellular proteins. These host factors include two members of the G3BP family and their mosquito homolog Rin, two members of the NAP1 family, and several SH3 domain-containing proteins. Interaction with G3BP proteins or Rin is an absolute requirement for CHIKV replication, although it is insufficient to solely drive it in either vertebrate or mosquito cells. To achieve a detectable level of virus replication, HVD needs to bind members of at least one more protein family in addition to G3BPs. Interaction with NAP1L1 and NAP1L4 plays a more proviral role in vertebrate cells, while binding of SH3 domain-containing proteins to a proline-rich fragment of HVD is more critical for virus replication in the cells of mosquito origin. Modifications of binding sites in CHIKV HVD allow manipulation of the cell specificity of CHIKV replication. Similar changes may be introduced into HVDs of other alphaviruses to alter their replication in particular cells or tissues.IMPORTANCEAlphaviruses utilize a broad spectrum of cellular factors for efficient formation and function of replication complexes (RCs). Our data demonstrate for the first time that the hypervariable domain (HVD) of chikungunya virus nonstructural protein 3 (nsP3) is intrinsically disordered. It binds at least 3 families of cellular proteins, which play an indispensable role in viral RNA replication. The proteins of each family demonstrate functional redundancy. We provide a detailed map of the binding sites on CHIKV nsP3 HVD and show that mutations in these sites or the replacement of CHIKV HVD by heterologous HVD change cell specificity of viral replication. Such manipulations with alphavirus HVDs open an opportunity for development of new irreversibly attenuated vaccine candidates. To date, the disordered protein fragments have been identified in the nonstructural proteins of many other viruses. They may also interact with a variety of cellular factors that determine critical aspects of virus-host interactions.


2010 ◽  
Vol 37 (10) ◽  
pp. 933 ◽  
Author(s):  
Samira Hassan ◽  
Carolyn A. Behm ◽  
Ulrike Mathesius

Plant parasitic nematodes infect the roots of a wide range of host plants. Migratory endo- or ectoparasites feed off the roots temporarily, but sedentary endoparasites are biotrophic parasites that invade roots and establish a permanent feeding site by re-directing root cell development. Feeding sites develop after injection of nematode effectors into plant cells through a stylet. In this review, we concentrate on several recently-identified effectors and discuss their possible functions in re-directing root cell development. We give examples of effectors that regulate host gene expression, interact with specific host proteins or mimic plant signalling molecules.


Sign in / Sign up

Export Citation Format

Share Document