scholarly journals Defensive nymphs in the water-repellent gall of the social aphid Colophina monstrifica (Hemiptera: Aphididae: Eriosomatinae)

2021 ◽  
Author(s):  
Keigo Uematsu ◽  
Shigeyuki Aoki ◽  
Man-Miao Yang

The aphid Colophina monstrifica forms woolly colonies with sterile soldiers on the secondary host Clematis uncinata in Taiwan. However, the gall or primary-host generation of C. monstrifica has not been found to date. We successfully induced galls of the species on trees of Zelkova serrata through attaching its eggs onto the trees, and also found a few naturally formed galls on another Z. serrata tree. The identity of the aphids was confirmed by examining their morphology and mitochondrial DNA sequences. First- and second-instar nymphs in the galls exhibited attacking behavior toward artificially introduced moth larvae. Observations with a scanning electron microscope revealed that the gall inner surface was densely covered with minute trichomes. This indicates the water repellency of the inner surface, and strongly suggests that young nymphs of C. monstrifica dispose of honeydew globules outside the gall, as known in the congener C. clematis.

Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 293 ◽  
Author(s):  
Paz-Gómez ◽  
Caño-Ochoa ◽  
Rodríguez-Alabanda ◽  
Romero ◽  
Cabrerizo-Vílchez ◽  
...  

Fluoropolymer-based coatings are widely used for release applications. However, these hydrophobic surfaces do not reveal a significantly low adhesion. Water repellency incorporated to fluoropolymer coatings might enhance their release performance. In this work, we focused on the surface texturing of a well-known polytetrafluoroethylene (PTFE)-based coating. We explored as texturing routes: sanding, sandblasting and laser ablation. We examined the surface roughness with white light confocal microscopy and the surface morphology with environmental scanning electron microscopy (ESEM). Water-repellent fluoropolymer coatings were reproduced in all cases, although with different degree, parametrized with bounces of water drops (4–5 μL). Laser ablation enabled the lowest adhesion of coatings with 24 ± 2 bounces. This result and the current development of laser patterning for industry assure the incipient use of laser ablation for release coatings.


Author(s):  
David Quéré ◽  
Mathilde Reyssat

Superhydrophobic materials recently attracted a lot of attention, owing to the potential practical applications of such surfaces—they literally repel water, which hardly sticks to them, bounces off after an impact and slips on them. In this short review, we describe how water repellency arises from the presence of hydrophobic microstructures at the solid surface. A drop deposited on such a substrate can float above the textures, mimicking at room temperature what happens on very hot plates; then, a vapour layer comes between the solid and the volatile liquid, as described long ago by Leidenfrost. We present several examples of superhydrophobic materials (either natural or synthetic), and stress more particularly the stability of the air cushion—the liquid could also penetrate the textures, inducing a very different wetting state, much more sticky, due to the possibility of pinning on the numerous defects. This description allows us to discuss (in quite a preliminary way) the optimal design to be given to a solid surface to make it robustly water repellent.


2012 ◽  
Vol 549 ◽  
pp. 733-736
Author(s):  
Xiao Mian Chen ◽  
Jing Jing Shi ◽  
Hong Sha Su ◽  
Chun Ting Lin ◽  
En Long Yang

The catalytic properties of nano-TiO2 modified fabric suits the demand for self-cleaning in recent years. In this paper, advanced and innovative technology were used to synthesize water sol of titanium dioxide photocatalyst with high catalytic activity for fabric finishing. The wear behavior, antibacterial property and water repellency of treated and untreated fabric were tested. Results indicate that finishing and washing of the titanium dioxide had no effect on wear behavior; finished and washed fabric has a certain antibacterial and water repellent properties.


2010 ◽  
Vol 58 (3) ◽  
pp. 182 ◽  
Author(s):  
Swati Mittal ◽  
Usha Kumari ◽  
Pinky Tripathi ◽  
Ajay Kumar Mittal

The surface architecture of the epidermis on the outer surface of the operculum (OE) and the epithelium on the inner surface of the operculum (EISO) of Garra lamta was examined by scanning electron microscopy. The surface appeared smooth on the OE and wavy on the EISO. A wavy epithelium is considered to facilitate an increase in its stretchability, during the expansion of the branchial chamber. The OE and the EISO were covered by a mosaic pavement of epithelial cells with characteristic patterns of microridges and microbridges. Interspersed between the epithelial cells were mucous goblet cell pores, which were not significantly different in number in the OE and the EISO. Nevertheless, their surface area in the EISO was significantly higher than in the OE. This could be an adaptation to secrete higher amounts of mucus on the EISO for keeping the branchial chamber lining clean, avoiding clogging, the increased slipperiness reducing friction from water flow and increased efficiency in protecting against microbial attachments. Rounded bulges on the OE and the EISO were associated with mucous goblet cells. The absence of the taste buds in the EISO, in contrast to the OE, suggests that their function in the branchial chamber may not be of much significance in this fish. Breeding tubercles on the OE are believed to facilitate better contact between the male and female during breeding.


2008 ◽  
Vol 16 (3) ◽  
pp. 267 ◽  
Author(s):  
K. RASA ◽  
R. HORN ◽  
M. RÄTY

Water repellency (WR) delays soil wetting process, increases preferential flow and may give rise to surface runoff and consequent erosion. WR is commonly recognized in the soils of warm and temperate climates. To explore the occurrence of WR in soils in Finland, soil R index was studied on 12 sites of different soil types. The effects of soil management practice, vegetation age, soil moisture and drying temperature on WR were studied by a mini-infiltrometer with samples from depths of 0-5 and 5-10 cm. All studied sites exhibited WR (R index >1.95) at the time of sampling. WR increased as follows: sand (R = 1.8-5.0) < clay (R = 2.4-10.3) < organic (R = 7.9-undefined). At clay and sand, WR was generally higher at the soil surface and at the older sites (14 yr.), where organic matter is accumulated. Below 41 vol. % water content these mineral soils were water repellent whereas organic soil exhibited WR even at saturation. These results show that soil WR also reduces water infiltration at the prevalent field moisture regime in the soils of boreal climate. The ageing of vegetation increases WR and on the other hand, cultivation reduces or hinders the development of WR.;


2017 ◽  
Author(s):  
Emilia Urbanek ◽  
Stefan H. Doerr

Abstract. Soil CO2 emissions are strongly dependent on water distribution in soil pores, which in turn can be affected by soil water repellency (SWR; hydrophobicity). SWR restricts infiltration and movement of water, affecting soil hydrology as well as biological and chemical processes. Effects of SWR on soil carbon dynamics and specifically on soil respiration (CO2 efflux) have been studied in a few laboratory experiments but they remain poorly understood. Existing studies suggest that soil respiration is reduced in water repellent soils, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known. Here we report on the first field-based study that tests whether soil water repellency indeed reduces soil respiration, based on in situ field measurements carried out over three consecutive years at a grassland and pine forest site under the humid temperate climate of the UK. CO2 efflux was reduced on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. However, the highest respiration rates occurred not when SWR was absent, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. This somewhat surprising phenomenon can be explained by SWR-induced preferential flow, directing water and nutrients to microorganisms decomposing organic matter concentrated in hot spots near preferential flow paths. Water repellent zones provide air-filled pathways through the soil, which facilitate soil-atmosphere O2 and CO2 exchanges. This study demonstrates that SWR have contrasting effects on CO2 fluxes and, when spatially-variable, can enhance CO2 efflux. Spatial variability in SWR and associated soil moisture distribution needs to be considered when evaluating the effects of SWR on soil carbon dynamics under current and predicted future climatic conditions.


2001 ◽  
Vol 44 (4) ◽  
pp. 405-410 ◽  
Author(s):  
Maria das Graças Sajo ◽  
Silvia Rodrigues Machado

The leaf ultrastructure of five Xyris species were examined using scanning electron microscope (SEM), transmission electron microscope (TEM) and histochemical methods. All studied leaves show some features in epidermis and mesophyll, which were of considerable adaptative significance to drought stress. Such features included the occurrence of a pectic layer on the stomatal guard cells and the presence of a network of pectic compounds in the cuticle. Pectic compunds were also in abundance in lamellated walls of the mesophyll cells and on the inner surface of the sclerified cell walls of the vascular bundle sheaths. There were also specialized chlorenchymatous "peg cells" in the mesophyll and drops of phenolic compounds inside the epidermal cells.


Sign in / Sign up

Export Citation Format

Share Document