scholarly journals P53 is a direct regulator of the immune co-stimulatory molecule CD80

2021 ◽  
Author(s):  
Eziwoma Alibo ◽  
Gurkan Mollaoglu ◽  
Maxime Dhainaut ◽  
Royce Zhao ◽  
Samuel Rose ◽  
...  

Increasing evidence indicates oncogenes and tumor suppressors not only influence cell fitness but can also control the immunophenotype of cells. Here, we examined how 34 commonly mutated genes in colorectal cancer (CRC) may influence the expression of 8 key immunomodulatory proteins. To do this, we employed a functional genomics approach utilizing Pro-Code/CRISPR libraries for high-dimensional analysis. We introduced a library of 102 Pro-Code/gRNA combinations, targeting each of the 34 genes, in CT26 cells, a CRC cell model, and measured the expression of each of the immunomodulatory proteins by CyTOF mass cytometry. Notably, cells carrying a Pro-Code/CRISPR targeting the Trp53 lost expression of the immune co-stimulatory molecule CD80. Validation confirmed that Trp53 knockout resulted in the loss of CD80 and that activation of P53, through DNA damage or stabilization, resulted in CD80 upregulation. P53 ChIP-seq identified the CD80 promoter as a direct target of P53. CD80 regulation by P53 was identified in other cells, including normal epithelial cells and macrophages. Functionally, CD80 reduction caused by P53 loss led to a reduced capacity for CRC to prime antigen-specific T cells. These studies establish CD80, a canonical co-stimulatory molecule, as a direct target of the tumor suppressor and DNA damage response gene, P53.

2018 ◽  
pp. 1-7 ◽  
Author(s):  
Randy F. Sweis ◽  
Brian Heiss ◽  
Jeremy Segal ◽  
Lauren Ritterhouse ◽  
Sabah Kadri ◽  
...  

2021 ◽  
pp. molcanther.0879.2020
Author(s):  
Michael Cerniglia ◽  
Joanne Xiu ◽  
Axel Grothey ◽  
Michael J Pishvaian ◽  
Yasmine Baca ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Kerstin Felgentreff ◽  
Catharina Schuetz ◽  
Ulrich Baumann ◽  
Christian Klemann ◽  
Dorothee Viemann ◽  
...  

DNA damage occurs constantly in every cell triggered by endogenous processes of replication and metabolism, and external influences such as ionizing radiation and intercalating chemicals. Large sets of proteins are involved in sensing, stabilizing and repairing this damage including control of cell cycle and proliferation. Some of these factors are phosphorylated upon activation and can be used as biomarkers of DNA damage response (DDR) by flow and mass cytometry. Differential survival rates of lymphocyte subsets in response to DNA damage are well established, characterizing NK cells as most resistant and B cells as most sensitive to DNA damage. We investigated DDR to low dose gamma radiation (2Gy) in peripheral blood lymphocytes of 26 healthy donors and 3 patients with ataxia telangiectasia (AT) using mass cytometry. γH2AX, p-CHK2, p-ATM and p53 were analyzed as specific DDR biomarkers for functional readouts of DNA repair efficiency in combination with cell cycle and T, B and NK cell populations characterized by 20 surface markers. We identified significant differences in DDR among lymphocyte populations in healthy individuals. Whereas CD56+CD16+ NK cells showed a strong γH2AX response to low dose ionizing radiation, a reduced response rate could be observed in CD19+CD20+ B cells that was associated with reduced survival. Interestingly, γH2AX induction level correlated inversely with ATM-dependent p-CHK2 and p53 responses. Differential DDR could be further noticed in naïve compared to memory T and B cell subsets, characterized by reduced γH2AX, but increased p53 induction in naïve T cells. In contrast, DDR was abrogated in all lymphocyte populations of AT patients. Our results demonstrate differential DDR capacities in lymphocyte subsets that depend on maturation and correlate inversely with DNA damage-related survival. Importantly, DDR analysis of peripheral blood cells for diagnostic purposes should be stratified to lymphocyte subsets.


2020 ◽  
Vol 31 ◽  
pp. S1297
Author(s):  
I.G. Hwang ◽  
S.E. Park ◽  
J.H. Choi ◽  
H.S. Kim ◽  
H.Y. Min ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document