Construction of DNA damage response gene pprI function-deficient and function-com-plementary mutants in Deinococcus radiodurans

2005 ◽  
Vol 50 (4) ◽  
pp. 311 ◽  
Author(s):  
Guanjun GAO
2018 ◽  
pp. 1-7 ◽  
Author(s):  
Randy F. Sweis ◽  
Brian Heiss ◽  
Jeremy Segal ◽  
Lauren Ritterhouse ◽  
Sabah Kadri ◽  
...  

2021 ◽  
pp. molcanther.0879.2020
Author(s):  
Michael Cerniglia ◽  
Joanne Xiu ◽  
Axel Grothey ◽  
Michael J Pishvaian ◽  
Yasmine Baca ◽  
...  

2021 ◽  
Author(s):  
Rodolfo Bortolozo Serafim ◽  
Cibele Cardoso ◽  
Vanessa Arfelli ◽  
Valeria Valente ◽  
Leticia Fröhlich Archangelo

Abstract PIMREG expression strongly correlates with cellular proliferation in both malignant and normal cells. Throughout embryo development, PIMREG expression is prominent at the central nervous system. Recent studies have described high levels of PIMREG transcripts in different types of tumors and correlated with patient survival and tumor aggressiveness. Given the emerging significance of PIMREG in carcinogenesis and its putative role in the context of the nervous system, we investigated the expression and function of PIMREG in gliomas, the most common primary brain tumors. We performed an extensive analysis of PIMREG expression in tumors samples of glioma patients, assessed the effects of PIMREG silencing and overexpression on the sensitivity of glioblastoma cell lines treated with genotoxic agents commonly used for treating patients and assessed for treatment response, proliferation and migration. We show that glioblastoma exhibits the highest levels of PIMREG expression among all cancers analyzed and that elevated PIMREG expression is a biomarker for glioma progression and patient outcome. Moreover, PIMREG is induced by genotoxic agents and its silencing renders glioblastoma cells sensitive to temozolomide treatment and affects ATR- and ATM-dependent signaling. Our data demonstrate that PIMREG plays a role in DNA damage response and temozolomide resistance of glioblastoma cells and further support the PIMREG role in tumorigenesis.


2019 ◽  
Vol 201 (17) ◽  
Author(s):  
Shruti Mishra ◽  
Reema Chaudhary ◽  
Sudhir Singh ◽  
Swathi Kota ◽  
Hari S. Misra

ABSTRACT Guanine quadruplex (G4) DNA/RNA are secondary structures that regulate the various cellular processes in both eukaryotes and bacteria. Deinococcus radiodurans, a Gram-positive bacterium known for its extraordinary radioresistance, shows a genomewide occurrence of putative G4 DNA-forming motifs in its GC-rich genome. N-Methyl mesoporphyrin (NMM), a G4 DNA structure-stabilizing drug, did not affect bacterial growth under normal conditions but inhibited the postirradiation recovery of gamma-irradiated cells. Transcriptome sequencing analysis of cells treated with both radiation and NMM showed repression of gamma radiation-responsive gene expression, which was observed in the absence of NMM. Notably, this effect of NMM on the expression of housekeeping genes involved in other cellular processes was not observed. Stabilization of G4 DNA structures mapped at the upstream of recA and in the encoding region of DR_2199 had negatively affected promoter activity in vivo, DNA synthesis in vitro and protein translation in Escherichia coli host. These results suggested that G4 DNA plays an important role in DNA damage response and in the regulation of expression of the DNA repair proteins required for radioresistance in D. radiodurans. IMPORTANCE Deinococcus radiodurans can recover from extensive DNA damage caused by many genotoxic agents. It lacks LexA/RecA-mediated canonical SOS response. Therefore, the molecular mechanisms underlying the regulation of DNA damage response would be worth investigating in this bacterium. D. radiodurans genome is GC-rich and contains numerous islands of putative guanine quadruplex (G4) DNA structure-forming motifs. Here, we showed that in vivo stabilization of G4 DNA structures can impair DNA damage response processes in D. radiodurans. Essential cellular processes such as transcription, DNA synthesis, and protein translation, which are also an integral part of the double-strand DNA break repair pathway, are affected by the arrest of G4 DNA structure dynamics. Thus, the role of DNA secondary structures in DNA damage response and radioresistance is demonstrated.


2020 ◽  
Vol 31 ◽  
pp. S1297
Author(s):  
I.G. Hwang ◽  
S.E. Park ◽  
J.H. Choi ◽  
H.S. Kim ◽  
H.Y. Min ◽  
...  

Open Biology ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 150018 ◽  
Author(s):  
Jessica S. Brown ◽  
Stephen P. Jackson

Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1166-1166
Author(s):  
Wu Zhang ◽  
Meng-Lei Ding ◽  
Xian-Yang Li ◽  
He-Zhou Guo ◽  
Hong-Xin Zhang ◽  
...  

Abstract Throughout life hematopoietic stem cells (HSCs) have to cope with various kinds of insults from inflammation to DNA damage constantly to maintain the integrity of stemness. It is possible that certain core factors are commonly implicated in the maintenance of HSC pool and function under discrete physiological and pathological conditions. However, the underlying mechanisms remain largely unexplored. Previous works have demonstrated that retinoic acid inducible gene I (Rig-I) plays an essential role in recognizing viral RNA and activating type I IFN transcription, but whether Rig-I is involved in the core program governing HSCs’ behaviors is unclear. Here, we report that in the steady status Rig-I deficiency significantly increased HSC number by dysregulating the cell-cycling status of HSCs in mice. However, HSCs in Rig-I-/- mice were actually more sensitive to genotoxic treatments such as irradiation as compared to wild type HSCs, causing more Rig-I-/- mice to die of hematopoietic exhaustion. In accordance, HSC transplantation assays showed a significant impact of Rig-I loss on the hematopoietic regeneration capacity. Mechanistically, we found that Rig-I represented a pivotal component of the molecular pathways that mediate DNA-damage response and the repair of DNA lesions. Taken together, these data indicate a crucial role of innate immunity-regulatory factor Rig-I in the maintenance of HSCs. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document