scholarly journals Reprogrammed tracrRNAs enable repurposing RNAs as crRNAs and detecting RNAs

2021 ◽  
Author(s):  
Yang Liu ◽  
Filipe Pinto ◽  
Xinyi Wan ◽  
Shuguang Peng ◽  
Mengxi Li ◽  
...  

In type II CRISPR systems, the guide RNA (gRNA) consists of a CRISPR RNA (crRNA) and a hybridized trans-acting CRISPR RNA (tracrRNA) which interacts directly with Cas9 and is essential to its guided DNA targeting function. Though tracrRNAs are diverse in sequences and structures across type II CRISPR systems, the programmability of crRNA-tracrRNA hybridization for particular Cas9 has not been studied adequately. Here, we revealed the high programmability of crRNA-tracrRNA hybridization for Streptococcus pyogenes Cas9. By reprogramming the crRNA-tracrRNA hybridized sequence, reprogrammed tracrRNAs can repurpose various RNAs as crRNAs to trigger CRISPR function. We showed that the engineered crRNA-tracrRNA pairs enable design of orthogonal cellular computing devices and hijacking of endogenous RNAs as crRNAs. We next designed novel RNA sensors that can monitor the transcriptional activity of specific genes on the host genome and detect SARS-CoV-2 RNA in vitro. The engineering potential of crRNA-tracrRNA interaction has therefore redefined the capabilities of CRISPR/Cas9 system.

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2099
Author(s):  
Yunxing Liu ◽  
Fang Liang ◽  
Zijiong Dong ◽  
Song Li ◽  
Jianmin Ye ◽  
...  

The CRISPR/Cas9 system has been widely used for gene editing in zebrafish. However, the required NGG protospacer adjacent motif (PAM) of Streptococcus pyogenes Cas9 (SpCas9) notably restricts the editable range of the zebrafish genome. Recently, Cas9 from S. canis (ScCas9), which has a more relaxed 5′-NNG-3′ PAM, was reported to have activities in human cells and plants. However, the editing ability of ScCas9 has not been tested in zebrafish. Here we characterized and optimized the activity of ScCas9 in zebrafish. Delivered as a ribonucleoprotein complex, ScCas9 can induce mutations in zebrafish. Using the synthetic modified crRNA:tracrRNA duplex instead of in vitro-transcribed single guide RNA, the low activity at some loci were dramatically improved in zebrafish. As far as we know, our work is the first report on the evaluation of ScCas9 in animals. Our work optimized ScCas9 as a new nuclease for targeting relaxed NNG PAMs for zebrafish genome editing, which will further improve genome editing in zebrafish.


2019 ◽  
Author(s):  
Ryan T. Fuchs ◽  
Jennifer Curcuru ◽  
Megumu Mabuchi ◽  
Paul Yourik ◽  
G. Brett Robb

ABSTRACTCRISPR-Cas12a (Cpf1) are RNA-guided nuclease effectors of acquired immune response that act in their native organisms by cleaving targeted DNA sequences. Like CRISPR-Cas9 RNA-guided DNA targeting enzymes, Cas12a orthologs have been repurposed for genome editing in non-native organisms and for DNA manipulationin vitro. Recent studies have shown that activation of Cas12a via guide RNA-target DNA pairing causes multiple turnover, non-specific ssDNA degradation intrans, after single turnover on-target cleavage incis. We find that the non-specifictransnuclease activity affects RNA and dsDNA in addition to ssDNA, an activity made more evident by adjustment of reaction buffer composition. The magnitude of thetransnuclease activity varies depending on features of the guide RNA being used, specifically target sequence composition and length. We also find that the magnitude oftransnuclease activity varies between the three most well-studied Cas12a orthologs and that the Cas12a fromLachnospiraceaebacterium ND2006 appears to be the most active.


2020 ◽  
Vol 48 (4) ◽  
pp. 2026-2034 ◽  
Author(s):  
Iana Fedorova ◽  
Anatolii Arseniev ◽  
Polina Selkova ◽  
Georgii Pobegalov ◽  
Ignatiy Goryanin ◽  
...  

Abstract Type II CRISPR–Cas9 RNA-guided nucleases are widely used for genome engineering. Type II-A SpCas9 protein from Streptococcus pyogenes is the most investigated and highly used enzyme of its class. Nevertheless, it has some drawbacks, including a relatively big size, imperfect specificity and restriction to DNA targets flanked by an NGG PAM sequence. Cas9 orthologs from other bacterial species may provide a rich and largely untapped source of biochemical diversity, which can help to overcome the limitations of SpCas9. Here, we characterize CcCas9, a Type II-C CRISPR nuclease from Clostridium cellulolyticum H10. We show that CcCas9 is an active endonuclease of comparatively small size that recognizes a novel two-nucleotide PAM sequence. The CcCas9 can potentially broaden the existing scope of biotechnological applications of Cas9 nucleases and may be particularly advantageous for genome editing of C. cellulolyticum H10, a bacterium considered to be a promising biofuel producer.


2018 ◽  
Author(s):  
Senén D. Mendoza ◽  
Joel D. Berry ◽  
Eliza S. Nieweglowska ◽  
Lina M. Leon ◽  
David A. Agard ◽  
...  

All viruses require strategies to inhibit or evade the immunity pathways of cells they infect. The viruses that infect bacteria, bacteriophages (phages), must avoid nucleic-acid targeting immune pathways such as CRISPR-Cas and restriction endonucleases to replicate efficiently1. Here, we show that a jumbo phage infecting Pseudomonas aeruginosa, phage ΦKZ, is resistant to many immune systems in vivo, including CRISPR-Cas3 (Type I-C), Cas9 (Type II-A), Cas12 (Cpf1, Type V-A), and Type I restriction-modification (R-M) systems. We propose that ΦKZ utilizes a nucleus-like shell to protect its DNA from attack. Supporting this, we demonstrate that Cas9 is able to cleave ΦKZ DNA in vitro, but not in vivo and that Cas9 is physically occluded from the shell assembled by the phage during infection. Moreover, we demonstrate that the Achilles heel for this phage is the mRNA, as translation occurs outside of the shell, rendering the phage sensitive to the RNA targeting CRISPR-Cas enzyme, Cas13a (C2c2, Type VI-A). Collectively, we propose that the nucleus-like shell assembled by jumbo phages enables potent, broad spectrum evasion of DNA-targeting nucleases.


Author(s):  
Karlynne Freire Mendonça ◽  
José Klauber Roger Carneiro ◽  
Maria Auxiliadora Silva Oliveira

Objetivos: avaliar a atividade antimicrobiana em extrato aquoso, hidroalcoólico e alcoólico das folhas de espécies da família Lamiaceae frente a bactérias de interesse. Método: Foram escolhidas quatro espécies: Ocimum gratissimum, Plectranthus amboinicus, Mentha arvensis e Plectranthus barbatus. A partir das folhas foram confeccionados os extratos aquoso, hidroalcoólico e alcoólico nas concentrações 100mg/mL, 50mg/mL e 25mg/mL. Foram selecionadas as bactérias Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus e Pseudomonas aeruginosa para os ensaios de antibiose em Ágar Mueller-Hinton. Resultados: P. barbatus, em seu extrato hidroalcoólico mostrou ativo nas três concentrações para bactéria S. aureus, e ainda foi ativo para P. aeruginosa, demonstrando no extrato alcoólico atividade frente as bactérias. Para M. arvensis e P. amboinicus, seus extratos hidroalcoólico e alcoólico apresentaram atividade para S. aureus. Conclusão: Sugere-se que as espécies em questão apresentem boa atividade antimicrobiana, sendo necessária a realização de mais estudos para melhor entender esse mecanismo.


2006 ◽  
Vol 26 (3) ◽  
pp. 965-975 ◽  
Author(s):  
Tom S. Kim ◽  
Cynthia Heinlein ◽  
Robert C. Hackman ◽  
Peter S. Nelson

ABSTRACT Tmprss2 encodes an androgen-regulated type II transmembrane serine protease (TTSP) expressed highly in normal prostate epithelium and has been implicated in prostate carcinogenesis. Although in vitro studies suggest protease-activated receptor 2 may be a substrate for TMPRSS2, the in vivo biological activities of TMPRSS2 remain unknown. We generated Tmprss2 −/− mice by disrupting the serine protease domain through homologous recombination. Compared to wild-type littermates, Tmprss2 −/− mice developed normally, survived to adulthood with no differences in protein levels of prostatic secretions, and exhibited no discernible abnormalities in organ histology or function. Loss of TMPRSS2 serine protease activity did not influence fertility, reduce survival, result in prostate hyperplasia or carcinoma, or alter prostatic luminal epithelial cell regrowth following castration and androgen replacement. Lack of an observable phenotype in Tmprss2 −/− mice was not due to transcriptional compensation by closely related Tmprss2 homologs. We conclude that the lack of a discernible phenotype in Tmprss2 −/− mice suggests functional redundancy involving one or more of the type II transmembrane serine protease family members or other serine proteases. Alternatively, TMPRSS2 may contribute a specialized but nonvital function that is apparent only in the context of stress, disease, or other systemic perturbation.


Sign in / Sign up

Export Citation Format

Share Document