scholarly journals Genome Editing in Zebrafish by ScCas9 Recognizing NNG PAM

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2099
Author(s):  
Yunxing Liu ◽  
Fang Liang ◽  
Zijiong Dong ◽  
Song Li ◽  
Jianmin Ye ◽  
...  

The CRISPR/Cas9 system has been widely used for gene editing in zebrafish. However, the required NGG protospacer adjacent motif (PAM) of Streptococcus pyogenes Cas9 (SpCas9) notably restricts the editable range of the zebrafish genome. Recently, Cas9 from S. canis (ScCas9), which has a more relaxed 5′-NNG-3′ PAM, was reported to have activities in human cells and plants. However, the editing ability of ScCas9 has not been tested in zebrafish. Here we characterized and optimized the activity of ScCas9 in zebrafish. Delivered as a ribonucleoprotein complex, ScCas9 can induce mutations in zebrafish. Using the synthetic modified crRNA:tracrRNA duplex instead of in vitro-transcribed single guide RNA, the low activity at some loci were dramatically improved in zebrafish. As far as we know, our work is the first report on the evaluation of ScCas9 in animals. Our work optimized ScCas9 as a new nuclease for targeting relaxed NNG PAMs for zebrafish genome editing, which will further improve genome editing in zebrafish.

2020 ◽  
Vol 2 ◽  
Author(s):  
Chengwei Zhang ◽  
Guiting Kang ◽  
Xinxiang Liu ◽  
Si Zhao ◽  
Shuang Yuan ◽  
...  

The CRISPR-Cas9 system enables simple, rapid, and effective genome editing in many species. Nevertheless, the requirement of an NGG protospacer adjacent motif (PAM) for the widely used canonical Streptococcus pyogenes Cas9 (SpCas9) limits the potential target sites. The xCas9, an engineered SpCas9 variant, was developed to broaden the PAM compatibility to NG, GAA, and GAT PAMs in human cells. However, no knockout rice plants were generated for GAA PAM sites, and only one edited target with a GAT PAM was reported. In this study, we used tRNA and enhanced sgRNA (esgRNA) to develop an efficient CRISPR-xCas9 genome editing system able to mutate genes at NG, GAA, GAT, and even GAG PAM sites in rice. We also developed the corresponding xCas9-based cytosine base editor (CBE) that can edit the NG and GA PAM sites. These new editing tools will be useful for future rice research or breeding, and may also be applicable for other related plant species.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hyeran Kim ◽  
Jisun Choi ◽  
Kang-Hee Won

Abstract Background DNA-free, clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) ribonucleoprotein (RNP)-based genome editing is a simple, convincing, and promising tool for precision crop breeding. The efficacy of designed CRISPR-based genome editing tools is a critical prerequisite for successful precision gene editing in crops. Results This study demonstrates that soil-grown leaf- or callus-derived pepper protoplasts are a useful system for screening of efficient guide RNAs for CRISPR/Cas9 or CRISPR/Cas12a (Cpf1). CRISPR/Cas9 or Cpf1 were delivered as CRISPR/RNP complexes of purified endonucleases mixed with the designed single guide RNA, which can edit the target gene, CaMLO2 in two pepper cultivars with whole genome sequenced, Capsicum annuum ‘CM334’ and C. annuum ‘Dempsey’. The designed guide RNAs (sgRNAs for Cas9 or crRNAs for Cpf1) are conserved for CaMLO2 in both CM334 and Dempsey and cleave CaMLO2 in vitro. CRISPR/Cas9- or /Cpf1-RNP complexes were transfected into purely isolated protoplasts of the hot pepper CM334 and sweet pepper Dempsey by PEG-mediated delivery. Targeted deep sequencing analysis indicated that the targeted CaMLO2 gene was differentially edited in both cultivars, depending on the applied CRISPR/RNPs. Conclusions Pepper protoplast-based CRISPR guide-RNA selection is a robust method to check the efficacy of designed CRISPR tools and is a prerequisite for regenerating edited plants, which is a critical time-limiting procedure. The rapid and convincing selection of guide RNA against a target genome reduces the laborious efforts for tissue culture and facilitates effective gene editing for pepper improvement.


Science ◽  
2020 ◽  
Vol 368 (6488) ◽  
pp. 290-296 ◽  
Author(s):  
Russell T. Walton ◽  
Kathleen A. Christie ◽  
Madelynn N. Whittaker ◽  
Benjamin P. Kleinstiver

Manipulation of DNA by CRISPR-Cas enzymes requires the recognition of a protospacer-adjacent motif (PAM), limiting target site recognition to a subset of sequences. To remove this constraint, we engineered variants of Streptococcus pyogenes Cas9 (SpCas9) to eliminate the NGG PAM requirement. We developed a variant named SpG that is capable of targeting an expanded set of NGN PAMs, and we further optimized this enzyme to develop a near-PAMless SpCas9 variant named SpRY (NRN and to a lesser extent NYN PAMs). SpRY nuclease and base-editor variants can target almost all PAMs, exhibiting robust activities on a wide range of sites with NRN PAMs in human cells and lower but substantial activity on those with NYN PAMs. Using SpG and SpRY, we generated previously inaccessible disease-relevant genetic variants, supporting the utility of high-resolution targeting across genome editing applications.


2021 ◽  
Author(s):  
Ryoya Nakagawa ◽  
Soh Ishiguro ◽  
Sae Okazaki ◽  
Hideto Mori ◽  
Mamoru Tanaka ◽  
...  

Abstract The RNA-guided DNA endonuclease Cas9 is a versatile genome-editing tool. However, the molecular weight of the commonly used Streptococcus pyogenes Cas9 is relatively large. Consequently, its gene cannot be efficiently packaged into an adeno-associated virus vector, thereby limiting its applications for therapeutic genome editing. Here, we biochemically characterized the compact Cas9 from Campylobacter jejuni (CjCas9) and found that CjCas9 has a previously unrecognized preference for the N3VRYAC protospacer adjacent motif. We thus rationally engineered a CjCas9 variant (enCjCas9), which exhibits enhanced cleavage activity and a broader targeting range both in vitro and in human cells, as compared with CjCas9. Furthermore, a nickase version of enCjCas9, but not CjCas9, fused with a cytosine deaminase mediated C-to-T conversions in human cells. Overall, our findings expand the CRISPR-Cas toolbox for therapeutic genome engineering.


2017 ◽  
Author(s):  
Jiyung Shing ◽  
Fuguo Jiang ◽  
Jun-Jie Liu ◽  
Nicholas L. Bray ◽  
Benjamin J. Rauch ◽  
...  

CRISPR-Cas9 gene editing technology is derived from a microbial adaptive immune system, where bacteriophages are often the intended target. Natural inhibitors of CRISPR-Cas9 enable phages to evade immunity and show promise in controlling Cas9-mediated gene editing in human cells. However, the mechanism of CRISPR-Cas9 inhibition is not known and the potential applications for Cas9 inhibitor proteins in mammalian cells has not fully been established. We show here that the anti-CRISPR protein AcrIIA4 binds only to assembled Cas9-single guide RNA (sgRNA) complexes and not to Cas9 protein alone. A 3.9 Å resolution cryo-EM structure of the Cas9-sgRNA-AcrIIA4 complex revealed that the surface of AcrIIA4 is highly acidic and binds with 1:1 stoichiometry to a region of Cas9 that normally engages the DNA protospacer adjacent motif (PAM). Consistent with this binding mode, order-of-addition experiments showed that AcrIIA4 interferes with DNA recognition but has no effect on pre-formed Cas9-sgRNA-DNA complexes. Timed delivery of AcrIIA4 into human cells as either protein or expression plasmid allows on-target Cas9-mediated gene editing while reducing off-target edits. These results provide a mechanistic understanding of AcrIIA4 function and demonstrate that inhibitors can modulate the extent and outcomes of Cas9-mediated gene editing.


2019 ◽  
Author(s):  
Ziying Hu ◽  
Daqi Wang ◽  
Chengdong Zhang ◽  
Shuai Wang ◽  
Siqi Gao ◽  
...  

AbstractThe CRISPR/Cas9 system derived from Streptococcus pyogenes (SpCas9) provides unprecedented genome editing capabilities, but the potential for off-target mutations limits its application. In addition to NGG protospacer adjacent motif (PAM), off-target mutations are also associated with noncanonical PAMs, which have not yet been systematically evaluated. Here, we developed a highly sensitive approach that allows systematically analyzing PAM sequences in human cells, and identified multiple alternative PAMs recognized by SpCas9.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuu Asano ◽  
Kensuke Yamashita ◽  
Aoi Hasegawa ◽  
Takanori Ogasawara ◽  
Hoshie Iriki ◽  
...  

AbstractThe powerful genome editing tool Streptococcus pyogenes Cas9 (SpCas9) requires the trinucleotide NGG as a protospacer adjacent motif (PAM). The PAM requirement is limitation for precise genome editing such as single amino-acid substitutions and knock-ins at specific genomic loci since it occurs in narrow editing window. Recently, SpCas9 variants (i.e., xCas9 3.7, SpCas9-NG, and SpRY) were developed that recognise the NG dinucleotide or almost any other PAM sequences in human cell lines. In this study, we evaluated these variants in Dictyostelium discoideum. In the context of targeted mutagenesis at an NG PAM site, we found that SpCas9-NG and SpRY were more efficient than xCas9 3.7. In the context of NA, NT, NG, and NC PAM sites, the editing efficiency of SpRY was approximately 60% at NR (R = A and G) but less than 22% at NY (Y = T and C). We successfully used SpRY to generate knock-ins at specific gene loci using donor DNA flanked by 60 bp homology arms. In addition, we achieved point mutations with efficiencies as high as 97.7%. This work provides tools that will significantly expand the gene loci that can be targeted for knock-out, knock-in, and precise point mutation in D. discoideum.


2020 ◽  
Author(s):  
Regina Tkach ◽  
Natalia Nikitchina ◽  
Nikita Shebanov ◽  
Vladimir Mekler ◽  
Egor Ulashchik ◽  
...  

ABSTRACTCRISPR RNAs (crRNAs) directing target DNA cleavage by type V-A Cas12a nucleases consist of repeat-derived 5’-scaffold moiety and 3’-spacer moiety. We demonstrate that removal of most of the 20-nucleotide scaffold has only a slight effect on in vitro target DNA cleavage by Cas12a ortholog from Acidaminococcus sp (AsCas12a). In fact, residual cleavage was observed even in the presence of a 20-nucleotide crRNA spacer part only, while crRNAs split into two individual moieties (scaffold and spacer RNAs) catalyzed highly specific and efficient cleavage of target DNA. Our data also indicate that AsCas12a combined with split crRNA forms a stable complex with the target. These observations were also confirmed in lysates of human cells expressing AsCas12a. The ability of the AsCas12a nuclease to be programmed with split crRNAs opens new lines of inquiry into the mechanisms of target recognition and cleavage and will further facilitate genome editing techniques based on Cas12a nucleases.


2019 ◽  
Vol 31 (1) ◽  
pp. 165
Author(s):  
M. Poirier ◽  
D. Miskel ◽  
F. Rings ◽  
K. Schellander ◽  
M. Hoelker

Successful genome editing of blastocysts using zygote microinjection with transcription activator-like effector nucleases has already been accomplished in cattle as well as a limited number of CRISPR-Cas9 microinjections of zygotes, mostly using RNA. Recent editing of the Pou5f1 gene in bovine blastocysts using CRISPR-Cas9, clarifying its role in embryo development, supports the viability of this technology to produce genome edited cattle founders. To further this aim, we hypothesise that editing of the coatomer subunit α (COPA) gene, a protein carrier associated with the dominant red coat colour phenotype in Holstein cattle, is feasible through zygote microinjection. Here, we report successful gene editing of COPA in cattle zygotes reaching the blastocyst stage, a necessary step in creating genome edited founder animals. A single guide RNA was designed to target the sixth exon of COPA. Presumptive zygotes derived from slaughterhouse oocytes by in vitro maturation and fertilization were microinjected either with the PX458 plasmid (Addgene #48138; n=585, 25ng µL−1) or with a ribonucleoprotein effector complex (n=705, 20, 50, 100, and 200ng µL−1) targeting the sixth exon of COPA. Plasmid injected zygotes were selected for green fluorescent protein (GFP) fluorescence at Day 8, whereas protein injected zygotes were selected within 24h post-injection based on ATTO-550 fluorescence. To assess gene editing rates, single Day 8 blastocysts were PCR amplified and screened using the T7 endonuclease assay. Positive structures were Sanger sequenced using bacterial cloning. For plasmid injected groups, the Day 8 blastocyst rate averaged 30.3% (control 18.1%). The fluorescence rate at Day 8 was 6.3%, with a GFP positive blastocyst rate of 1.6%, totaling 7 blastocysts. The T7 assay revealed editing in GFP negative blastocysts and morulae as well, indicating that GFP is not a precise selection tool for successful editing. In protein injection groups, the highest concentration yielded the lowest survival rates (200ng µL−1, 50.0%, n=126), whereas the lowest concentration had the highest survival rate (20ng µL−1, 79.5%, n=314). The Day 8 blastocyst rate reached an average of 25% across groups. However, no edited blastocysts were observed in the higher concentration groups (100,200ng µL−1). The highest number of edited embryos was found in the lowest concentration injected (20ng µL−1, 4/56). Edited embryos showed multiple editing events neighbouring the guide RNA target site ranging from a 12-bp insertion to a 9-bp deletion, as well as unedited sequences. Additionally, one embryo showed a biallelic 15-bp deletion of COPA (10 clones). One possible reason for the presence of only mosaic editing and this in-frame deletion could be that a working copy of COPA is needed for proper blastocyst formation and that a knockout could be lethal. Additional validation and optimization is needed to elucidate the functional role of COPA during early development and its modulation when creating founder animals.


2019 ◽  
Vol 19 (3) ◽  
pp. 164-174 ◽  
Author(s):  
Jinyu Sun ◽  
Jianchu Wang ◽  
Donghui Zheng ◽  
Xiaorong Hu

Abstract Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is one of the most versatile and efficient gene editing technologies, which is derived from adaptive immune strategies for bacteria and archaea. With the remarkable development of programmable nuclease-based genome engineering these years, CRISPR-Cas9 system has developed quickly in recent 5 years and has been widely applied in countless areas, including genome editing, gene function investigation and gene therapy both in vitro and in vivo. In this paper, we briefly introduce the mechanisms of CRISPR-Cas9 tool in genome editing. More importantly, we review the recent therapeutic application of CRISPR-Cas9 in various diseases, including hematologic diseases, infectious diseases and malignant tumor. Finally, we discuss the current challenges and consider thoughtfully what advances are required in order to further develop the therapeutic application of CRISPR-Cas9 in the future.


Sign in / Sign up

Export Citation Format

Share Document