scholarly journals Functional connectome reorganization relates to post-stroke motor recovery and structural disconnection

2021 ◽  
Author(s):  
Emily Olafson ◽  
Keith Jamison ◽  
Elizabeth Sweeney ◽  
Hesheng Liu ◽  
Danhong Wang ◽  
...  

Motor recovery following ischemic stroke is contingent on the ability of surviving brain networks to compensate for damaged tissue. In rodent models, sensory and motor cortical representations have been shown to remap onto intact tissue around the lesion site, but remapping to more distal sites (e.g. in the contralesional hemisphere) has also been observed. Resting state functional connectivity (FC) analysis has been employed to study compensatory network adaptations in humans, but mechanisms and time course of motor recovery are not well understood. Here, we examine longitudinal FC in 23 first-episode ischemic pontine stroke patients (34-74 years old; 8 female, 15 male) and utilize a graph matching approach to identify patterns of regional functional connectivity reorganization during recovery. We quantified functional reorganization between several intervals ranging from 1 week to 6 months following stroke, and demonstrated that the areas that undergo functional reorganization most frequently are in cerebellar/subcortical networks. Brain regions with more structural connectome disruption due to the stroke also had more functional remapping over time. Finally, we show that the amount of functional reorganization between time points is correlated with the extent of motor recovery observed between those time points in the early to late subacute phases, and, furthermore, individuals with greater baseline motor impairment demonstrate more extensive early subacute functional reorganization (from one to two weeks post-stroke) and this reorganization correlates with better motor recovery at 6 months. Taken together, these results suggest that our graph matching approach can quantify recovery-relevant, whole-brain functional connectivity network reorganization after stroke.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Peipei Wang ◽  
Zhenxiang Zang ◽  
Miao Zhang ◽  
Yanxiang Cao ◽  
Zhilian Zhao ◽  
...  

Purpose. We investigated the disparate influence of lesion location on functional damage and reorganization of the sensorimotor brain network in patients with thalamic infarction and pontine infarction. Methods. Fourteen patients with unilateral infarction of the thalamus and 14 patients with unilateral infarction of the pons underwent longitudinal fMRI measurements and motor functional assessment five times during a 6-month period (<7 days, at 2 weeks, 1 month, 3 months, and 6 months after stroke onset). Twenty-five age- and sex-matched controls underwent MRI examination across five consecutive time points in 6 months. Functional images from patients with left hemisphere lesions were first flipped from the left to the right side. The voxel-wise connectivity analyses between the reference time course of each ROI (the contralateral dorsal lateral putamen (dl-putamen), pons, ventral anterior (VA), and ventral lateral (VL) nuclei of the thalamus) and the time course of each voxel in the sensorimotor area were performed for all five measurements. One-way ANOVA was used to identify between-group differences in functional connectivity (FC) at baseline stage (<7 days after stroke onset), with infarction volume included as a nuisance variable. The family-wise error (FWE) method was used to account for multiple comparison issues using SPM software. Post hoc repeated-measure ANOVA was applied to examine longitudinal FC reorganization. Results. At baseline stage, significant differences were detected between the contralateral VA and ipsilateral postcentral gyrus (cl_VA-ip_postcentral), contralateral VL and ipsilateral precentral gyrus (cl_VL-ip_precentral). Repeated measures ANOVA revealed that the FC change of cl_VA-ip_postcentral differ significantly among the three groups over time. The significant changes of FC between cl_VA and ip_postcentral at different time points in the thalamic infarction group showed that compared with 7 days after stroke onset, there was significantly increased FC of cl_VA-ip_postcentral at 1 month, 3 months, and 6 months after stroke onset. Conclusions. The different patterns of sensorimotor functional damage and reorganization in patients with pontine infarction and thalamic infarction may provide insights into the neural mechanisms underlying functional recovery after stroke.


2017 ◽  
Author(s):  
Roel M. Willems ◽  
Franziska Hartung

Behavioral evidence suggests that engaging with fiction is positively correlated with social abilities. The rationale behind this link is that engaging with fictional narratives offers a ‘training modus’ for mentalizing and empathizing. We investigated the influence of the amount of reading that participants report doing in their daily lives, on connections between brain areas while they listened to literary narratives. Participants (N=57) listened to two literary narratives while brain activation was measured with fMRI. We computed time-course correlations between brain regions, and compared the correlation values from listening to narratives to listening to reversed speech. The between-region correlations were then related to the amount of fiction that participants read in their daily lives. Our results show that amount of fiction reading is related to functional connectivity in areas known to be involved in language and mentalizing. This suggests that reading fiction influences social cognition as well as language skills.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria J. S. Guerreiro ◽  
Madita Linke ◽  
Sunitha Lingareddy ◽  
Ramesh Kekunnaya ◽  
Brigitte Röder

AbstractLower resting-state functional connectivity (RSFC) between ‘visual’ and non-‘visual’ neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition—as well as to evaluate the effect of resting state condition on group differences in RSFC—, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between ‘visual’ and non-‘visual’ circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephen J. Kohut ◽  
Dionyssios Mintzopoulos ◽  
Brian D. Kangas ◽  
Hannah Shields ◽  
Kelly Brown ◽  
...  

AbstractLong-term cocaine use is associated with a variety of neural and behavioral deficits that impact daily function. This study was conducted to examine the effects of chronic cocaine self-administration on resting-state functional connectivity of the dorsal anterior cingulate (dACC) and putamen—two brain regions involved in cognitive function and motoric behavior—identified in a whole brain analysis. Six adult male squirrel monkeys self-administered cocaine (0.32 mg/kg/inj) over 140 sessions. Six additional monkeys that had not received any drug treatment for ~1.5 years served as drug-free controls. Resting-state fMRI imaging sessions at 9.4 Tesla were conducted under isoflurane anesthesia. Functional connectivity maps were derived using seed regions placed in the left dACC or putamen. Results show that cocaine maintained robust self-administration with an average total intake of 367 mg/kg (range: 299–424 mg/kg). In the cocaine group, functional connectivity between the dACC seed and regions primarily involved in motoric behavior was weaker, whereas connectivity between the dACC seed and areas implicated in reward and cognitive processing was stronger. In the putamen seed, weaker widespread connectivity was found between the putamen and other motor regions as well as with prefrontal areas that regulate higher-order executive function; stronger connectivity was found with reward-related regions. dACC connectivity was associated with total cocaine intake. These data indicate that functional connectivity between regions involved in motor, reward, and cognitive processing differed between subjects with recent histories of cocaine self-administration and controls; in dACC, connectivity appears to be related to cumulative cocaine dosage during chronic exposure.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Woo-Sung Kim ◽  
Guangfan Shen ◽  
Congcong Liu ◽  
Nam-In Kang ◽  
Keon-Hak Lee ◽  
...  

Abstract Altered resting-state functional connectivity (FC) of the amygdala (AMY) has been demonstrated to be implicated in schizophrenia (SZ) and attenuated psychosis syndrome (APS). Specifically, no prior work has investigated FC in individuals with APS using subregions of the AMY as seed regions of interest. The present study examined AMY subregion-based FC in individuals with APS and first-episode schizophrenia (FES) and healthy controls (HCs). The resting state FC maps of the three AMY subregions were computed and compared across the three groups. Correlation analysis was also performed to examine the relationship between the Z-values of regions showing significant group differences and symptom rating scores. Individuals with APS showed hyperconnectivity between the right centromedial AMY (CMA) and left frontal pole cortex (FPC) and between the laterobasal AMY and brain stem and right inferior lateral occipital cortex compared to HCs. Patients with FES showed hyperconnectivity between the right superficial AMY and left occipital pole cortex and between the left CMA and left thalamus compared to the APS and HCs respectively. A negative relationship was observed between the connectivity strength of the CMA with the FPC and negative-others score of the Brief Core Schema Scales in the APS group. We observed different altered FC with subregions of the AMY in individuals with APS and FES compared to HCs. These results shed light on the pathogenetic mechanisms underpinning the development of APS and SZ.


2019 ◽  
Vol 51 (3) ◽  
pp. 155-166
Author(s):  
Annamaria Painold ◽  
Pascal L. Faber ◽  
Eva Z. Reininghaus ◽  
Sabrina Mörkl ◽  
Anna K. Holl ◽  
...  

Bipolar disorder (BD) is a chronic illness with a relapsing and remitting time course. Relapses are manic or depressive in nature and intermitted by euthymic states. During euthymic states, patients lack the criteria for a manic or depressive diagnosis, but still suffer from impaired cognitive functioning as indicated by difficulties in executive and language-related processing. The present study investigated whether these deficits are reflected by altered intracortical activity in or functional connectivity between brain regions involved in these processes such as the prefrontal and the temporal cortices. Vigilance-controlled resting state EEG of 13 euthymic BD patients and 13 healthy age- and sex-matched controls was analyzed. Head-surface EEG was recomputed into intracortical current density values in 8 frequency bands using standardized low-resolution electromagnetic tomography. Intracortical current densities were averaged in 19 evenly distributed regions of interest (ROIs). Lagged coherences were computed between each pair of ROIs. Source activity and coherence measures between patients and controls were compared (paired t tests). Reductions in temporal cortex activity and in large-scale functional connectivity in patients compared to controls were observed. Activity reductions affected all 8 EEG frequency bands. Functional connectivity reductions affected the delta, theta, alpha-2, beta-2, and gamma band and involved but were not limited to prefrontal and temporal ROIs. The findings show reduced activation of the temporal cortex and reduced coordination between many brain regions in BD euthymia. These activation and connectivity changes may disturb the continuous frontotemporal information flow required for executive and language-related processing, which is impaired in euthymic BD patients.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S4-S4
Author(s):  
Jose Maximo ◽  
Frederic Briend ◽  
William Armstrong ◽  
Nina Kraguljac ◽  
Adrienne Lahti

Abstract Background Schizophrenia is thought to be a disorder of brain dysconnectivity. An imbalance between cortical excitation/inhibition is also implicated, but the link between these abnormalities remains unclear. The present study used resting state functional connectivity MRI (rs-fcMRI) and magnetic resonance spectroscopy (MRS) to investigate how measurements of glutamate + glutamine (Glx) in the anterior cingulate cortex (ACC) relate to rs-fcMRI in medication-naïve first episode psychosis (FEP) subjects compared to healthy controls (HC). Based on our previous findings, we hypothesized that in HC would show correlations between Glx and rs-fMRI in the salience and default mode network, but these relationships would be altered in FEP. Methods Data from 53 HC (age = 24.70 ±6.23, 34M/19F) and 60 FEP (age = 24.08 ±6.29, 38M/22F) were analyzed. To obtain MRS data, a voxel was placed in the ACC (PRESS, TR/TE = 2000/80ms). Metabolite concentrations were quantified with respect to internal water using the AMARES algorithm in jMRUI. rs-fMRI data were processed using a standard preprocessing pipeline in the CONN toolbox. BOLD signal from a priori brain regions of interest from posterior cingulate cortex (default mode network, DMN), anterior cingulate cortex (salience network, SN), and right posterior parietal cortex (central executive network, CEN) were extracted and correlated with the rest of the brain to measure functional connectivity (FC). Group analyses were performed on Glx, FC, and Glx-FC interactions while controlling for age, gender, and motion when applicable. FC and Glx-FC analyses were performed using small volume correction [(p &lt; 0.01, threshold-free cluster enhancement corrected (TFCE)]. Results No significant between-group differences were found in Glx concentration in the ACC [F(1, 108) = 0.34, p = 0.56], but reduced FC was found on each network in FEP compared to HC (pTFCE corrected). Group Glx-FC interactions were found in the form of positive correlations between Glx and FC in DMN and SN in the HC group, but not in FEP; and negative correlations in CEN in HC, but not in FEP. Discussion While we did not find significant group differences in ACC Glx measurements, ACC Glx modulated FC differentially in FEP and HC. Positive correlations between Glx and FC were found in the SN and DMN, suggesting long range modulation of the two networks in HC, but not in FEP. Additionally, negative correlations between Glx and FC were found in CEN in HC, but not in FEP. Overall, these results suggest that even in the absence of group differences in Glx concentration, the long-range modulation of these 3 networks by ACC Glx is altered in FEP.


2018 ◽  
Vol 83 (9) ◽  
pp. S329
Author(s):  
Hironori Kuga ◽  
Andreia Faria ◽  
Lindsay Shaffer ◽  
Jeff Crawford ◽  
Takanori Ohgaru ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document