scholarly journals Assessment of Genetic Diversity and Population Genetic Structure of Santalum album L. in India by Genic and Genomic SSR markers

2021 ◽  
Author(s):  
Tanzeem Fatima ◽  
Ashutosh Srivastava ◽  
Vageeshbabu S Hanur ◽  
M. Srinivasa Rao

Sandalwood (Santalum album L.) is highly valued aromatic tropical tree. It is known for its high quality heartwood and oil. In this study 39 genic and genomic SSR markers were used to analyze the genetic diversity and population structure of 177 S. album accessions from 14 populations of three states in India. High genetic diversity was observed in terms of number of alleles 127 expected heterozygosity (He) ranged from 0.63-0.87 and the average PIC was 0.85. The selected population had relatively high genetic diversity with Shannons information index (I) >1.0. 0.02 mean coefficient of genetic differentiation (FST) and 10.55 gene flow were observed. AMOVA revealed that 92% of the variation observed within individuals. Based on cluster and Structure result individuals were not clustered as per their geographical origin. Furthermore the clusters were clearly distinguished by principal component analysis analysis and the result revealed that PC1 reflected the moderate contribution in genetic variation (6%) followed by PC2 (5.5%). From this study, high genetic diversity and genetic differentiation was found in S. album populations. The genetic diversity information of S. album populations can be used for selection of superior genotypes and germplasm conservation to promote the tree improvement of S. album populations.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yuejin Zhang ◽  
Yuanyuan Chen ◽  
Ruihong Wang ◽  
Ailin Zeng ◽  
Michael K. Deyholos ◽  
...  

A large scale of EST sequences of Polyporales was screened in this investigation in order to identify EST-SSR markers for various applications. The distribution of EST sequences and SSRs in five families of Polyporales was analyzed, respectively. Mononucleotide was the most abundant type, followed by trinucleotide. Among five families, Ganodermataceae occupied the most SSR markers, followed by Coriolaceae. Functional prediction of SSR marker-containing EST sequences inGanoderma lucidumobtained three main groups, namely, cellular component, biological process, and molecular function. Thirty EST-SSR primers were designed to evaluate the genetic diversity of 13 naturalPolyporus umbellatusaccessions. Twenty one EST-SSRs were polymorphic with average PIC value of 0.33 and transferability rate of 71%. These 13P.umbellatusaccessions showed relatively high genetic diversity. The expected heterozygosity, Nei’s gene diversity, and Shannon information index were 0.41, 0.39, and 0.57, respectively. Both UPGMA dendrogram and principal coordinate analysis (PCA) showed the same cluster result that divided the 13 accessions into three or four groups.


2012 ◽  
Vol 47 (8) ◽  
pp. 1087-1094
Author(s):  
Juliana Morini Küpper Cardoso Perseguini ◽  
Lineu Roberto de Castro Romão ◽  
Boris Briñez ◽  
Erivaldo José Scaloppi Junior ◽  
Paulo de Souza Gonçalves ◽  
...  

The objective of this work was to evaluate the efficiency of EST‑SSR markers in the assessment of the genetic diversity of rubber tree genotypes (Hevea brasiliensis) and to verify the transferability of these markers for wild species of Hevea. Forty‑five rubber tree accessions from the Instituto Agronômico (Campinas, SP, Brazil) and six wild species were used. Information provided by modified Roger's genetic distance were used to analyze EST‑SSR data. UPGMA clustering divided the samples into two major groups with high genetic differentiation, while the software Structure distributed the 51 clones into eight groups. A parallel could be established between both clustering analyses. The 30 polymorphic EST‑SSRs showed from two to ten alleles and were efficient in amplifying the six wild species. Functional EST‑SSR microsatellites are efficient in evaluating the genetic diversity among rubber tree clones and can be used to translate the genetic differences among cultivars and to fingerprint closely related materials. The accessions from the Instituto Agronômico show high genetic diversity. The EST‑SSR markers, developed from Hevea brasiliensis, show transferability and are able to amplify other species of Hevea.


Gene ◽  
2016 ◽  
Vol 591 (1) ◽  
pp. 227-235 ◽  
Author(s):  
Xiao Bin Liu ◽  
Bang Feng ◽  
Jing Li ◽  
Chen Yan ◽  
Zhu L. Yang

2021 ◽  
Vol 1 (01) ◽  
pp. 9-14
Author(s):  
SAILA KABIR ◽  
MD ABUL KASHEM ◽  
MOHAMMAD ZABED HOSSAIN

Lantana camara L., a well-known invasive alien species causing invasion and posing threat to native plant species community in different regions of Bangladesh. The present study aimed to investigate the genetic diversity of L. camara populations in different regions of Bangladesh. Eight RAPD markers were used in order to probe into its genetic variability. Total number of bands (202), polymorphic loci (104), per-centage of polymorphism (97.20%), average Shanon’s information index (0.3051±0.115), Nei’s gene diversity (0.4733±0.144) was found and in different populations and multiple divergent genetic clustering along with presence of unique alleles (4) for RAPD revealed high genetic diversity among the populations of L. camara in different regions of Bangladesh.


PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0176197 ◽  
Author(s):  
Lucie Meyer ◽  
Romain Causse ◽  
Fanny Pernin ◽  
Romain Scalone ◽  
Géraldine Bailly ◽  
...  

2021 ◽  
Author(s):  
Guai-qiang Chai ◽  
Yizhong Duan ◽  
Peipei Jiao ◽  
Zhongyu Du ◽  
Furen Kang

Abstract Background:Elucidating and revealing the population genetic structure, genetic diversity and recombination is essential for understanding the evolution and adaptation of species. Ammopiptanthus, which is an endangered survivor from the Tethys in the Tertiary Period, is the only evergreen broadleaf shrub grown in Northwest of China. However, little is known about its genetic diversity and underlying adaptation mechanisms. Results:Here, 111 Ammopiptanthus individuals collected from fifteen natural populations in estern China were analyzed by means of the specific locus amplified fragment sequencing (SLAF-seq). Based on the single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) detected by SLAF-seq, genetic diversity and markers associated with climate and geographical distribution variables were identified. The results of genetic diversity and genetic differentiation revealed that all fifteen populations showed medium genetic diversity, with PIC values ranging from 0.1648 to 0.3081. AMOVA and Fst indicated that a low genetic differentiation existed among populations. Phylogenetic analysis showed that NX-BG and NMG-DQH of fifteen populations have the highest homology,while the genetic structure analysis revealed that these Ammopiptanthus germplasm accessions were structured primarily along the basis of their geographic collection, and that an extensive admixture occurred in each group. In addition, the genome-wide linkage disequilibrium (LD) and principal component analysis showed that Ammopiptanthus nanus had a more diverse genomic background, and all genetic populations were clearly distinguished, although different degrees of introgression were detected in these groups. Conclusion:Our study could provide guidance to the future design of association studies and the systematic utilization and protection of the genetic variation characterizing the Ammopiptanthus.


2021 ◽  
Vol 58 (2) ◽  
pp. 279-286
Author(s):  
Sandhani Saikia ◽  
Pratap Jyoti Handique ◽  
Mahendra K Modi

Genetic diversity is the source of novel allelic combinations that can be efficiently utilized in any crop improvement program. To facilitate future crop improvement programs in rice, a study was designed to identify the underlying genetic variations in the Sali rice germplasms of Assam using SSR markers. The 129 SSR markers that were used in the study amplified a total of 765 fragments with an average of 5.93 alleles per locus. The Shannon's Information Index was found to be in the range from 0.533 to 1.786. The Polymorphism Information Content (PIC) fell into the range from 0.304 to 0.691 with a mean value of 0.55. The overall FST value was found to be 0.519 that indicated the presence of genetic differentiation amongst the genotypes used in the study. The Sali population was divided into two clusters. The information obtained from the present study will facilitate the genetic improvement of Sali rice cultivars.


BMC Genetics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Cun Chen ◽  
Yanguang Chu ◽  
Changjun Ding ◽  
Xiaohua Su ◽  
Qinjun Huang

Abstract Background Black cottonwood (Populus deltoides) is one of the keystone forest tree species, and has become the main breeding parents in poplar hybrid breeding. However, the genetic diversity and population structure of the introduced resources are not fully understood. Results In the present study, five loci containing null alleles were excluded and 15 pairs of SSR (simple sequence repeat) primers were used to analyze the genetic diversity and population structure of 384 individuals from six provenances (Missouri, Iowa, Washington, Louisiana, and Tennessee (USA), and Quebec in Canada) of P. deltoides. Ultimately, 108 alleles (Na) were detected; the expected heterozygosity (He) per locus ranged from 0.070 to 0.905, and the average polymorphic information content (PIC) was 0.535. The provenance ‘Was’ had a relatively low genetic diversity, while ‘Que’, ‘Lou’, and ‘Ten’ provenances had high genetic diversity, with Shannon’s information index (I) above 1.0. The mean coefficient of genetic differentiation (Fst) and gene flow (Nm) were 0.129 and 1.931, respectively. Analysis of molecular variance (AMOVA) showed that 84.88% of the genetic variation originated from individuals. Based on principal coordinate analysis (PCoA) and STRUCTURE cluster analysis, individuals distributed in the Mississippi River Basin were roughly classified as one group, while those distributed in the St. Lawrence River Basin and Columbia River Basin were classified as another group. The cluster analysis based on the population level showed that provenance ‘Iow’ had a small gene flow and high degree of genetic differentiation compared with the other provenances, and was classified into one group. There was a significant relationship between genetic distance and geographical distance. Conclusions P. deltoides resources have high genetic diversity and there is a moderate level of genetic differentiation among provenances. Geographical isolation and natural conditions may be the main factors causing genetic differences among individuals. Individuals reflecting population genetic information can be selected to build a core germplasm bank. Meanwhile, the results could provide theoretical support for the scientific management and efficient utilization of P. deltoides genetic resources, and promote the development of molecular marker-assisted breeding of poplar.


Author(s):  
Manish Kapoor ◽  
Pooja Mawal ◽  
Vikas Sharma ◽  
Raghbir Chand Gupta

Abstract Background Various Asparagus species constitute the significant vegetable and medicinal genetic resource throughout the world. Asparagus species serve as important commodity of food and pharmaceutical industries in India. A diverse collection of Asparagus species from different localities of Northwest India was investigated for its genetic diversity using simple sequence repeat (SSR) markers. Results Polymorphic SSR markers revealed high genetic diversity. Primer SSR-15 amplified maximum of 8 fragments while 3 primers, namely, SSR-43, SSR-63, and AGA1 amplified minimum of 3 fragments. Collectively, 122 alleles were amplified in a range between 3 and 8 with an average of 5 alleles per marker. The size of the amplified alleles ranged between 90 and 680 base pairs. Polymorphism information content (PIC) value varied from a highest value of 0.499 in primer AGA1 to a lowest value of 0.231 in primer SSR-63 with a mean value of 0.376 showing considerable SSR polymorphism. Dendrogram developed on the basis of Jaccard’s similarity coefficient and neighbor-joining tree segregated all the studied Asparagus species into two discrete groups. Structure analysis based on Bayesian clustering allocated different accessions to two independent clusters and exhibited low level of individual admixture. Conclusions The genetic diversity analysis showed a conservative genetic background for maximum species of asparagus. Only Accessions of Asparagus adscendens were split into two diverse clusters suggesting a wide genetic base of this species as compared to other species. Overall genetic diversity was high, and this germplasm of Asparagus can be used in future improvement programs. The findings of current research on Asparagus germplasm can make a momentous contribution to initiatives of interbreeding, conservation, and improvement of Asparagus in future.


2007 ◽  
Vol 89 (2) ◽  
pp. 93-106 ◽  
Author(s):  
NOELLE A. BARKLEY ◽  
ROB E. DEAN ◽  
ROY N. PITTMAN ◽  
MING L. WANG ◽  
CORLEY C. HOLBROOK ◽  
...  

SummaryThirty-one genomic SSR markers with a M13 tail attached were used to assess the genetic diversity of the peanut mini core collection. The M13-tailed method was effective in discriminating almost all the cultivated and wild accessions. A total of 477 alleles were detected with an average of 15·4 alleles per locus. The mean polymorphic information content (PIC) score was 0·687. The cultivated peanut (Arachis hypogaea L.) mini core produced a total of 312 alleles with an average of 10·1 alleles per locus. A neighbour-joining tree was constructed to determine the interspecific and intraspecific relationships in this data set. Almost all the peanut accessions in this data set classified into subspecies and botanical varieties such as subsp. hypogaea var. hypogaea, subsp. fastigiata var. fastigiata, and subsp. fastigiata var. vulgaris clustered with other accessions with the same classification, which lends further support to their current taxonomy. Alleles were sequenced from one of the SSR markers used in this study, which demonstrated that the repeat motif is conserved when transferring the marker across species borders. This study allowed the examination of the diversity and phylogenetic relationships in the peanut mini core which has not been previously reported.


Sign in / Sign up

Export Citation Format

Share Document