scholarly journals Tangential high-density electrode insertions allow to simultaneously measure neuronal activity across an extended region of the visual field in mouse superior colliculus

2021 ◽  
Author(s):  
Jeremie Sibille ◽  
Carolin Gehr ◽  
Kai Lun Teh ◽  
Jens Kremkow

The superior colliculus (SC) is a midbrain structure that plays a central role in visual processing. Although we have learned a considerable amount about the function of single SC neurons, the way in which sensory information is represented and processed on the population level in awake behaving animals and across a large region of the retinotopic map is still largely unknown. Partially because the SC is anatomically located below the cortical sheet and the transverse sinus, it is technically difficult to measure neuronal activity from a large population of neurons in SC. To address this, we propose a tangential recording configuration using high-density electrode probes (Neuropixels) in mouse SC in vivo that permits a large number of recording sites (~200) accessibility inside the SC circuitry. This approach thereby provides a unique opportunity to measure the activity of SC neuronal populations composing up to ~2 mm of SC tissue and characterized by receptive fields covering an extended region in the visual field. Here we describe how to perform tangential recordings along the anterior-posterior and the medio-lateral axis of the mouse SC in vivo and how to combine this approach with optogenetic tools for cell-type identification on the population level.

2021 ◽  
Author(s):  
Shinya Ito ◽  
Yufei Si ◽  
Alan M. Litke ◽  
David A. Feldheim

AbstractSensory information from different modalities is processed in parallel, and then integrated in associative brain areas to improve object identification and the interpretation of sensory experiences. The Superior Colliculus (SC) is a midbrain structure that plays a critical role in integrating visual, auditory, and somatosensory input to assess saliency and promote action. Although the response properties of the individual SC neurons to visuoauditory stimuli have been characterized, little is known about the spatial and temporal dynamics of the integration at the population level. Here we recorded the response properties of SC neurons to spatially restricted visual and auditory stimuli using large-scale electrophysiology. We then created a general, population-level model that explains the spatial, temporal, and intensity requirements of stimuli needed for sensory integration. We found that the mouse SC contains topographically organized visual and auditory neurons that exhibit nonlinear multisensory integration. We show that nonlinear integration depends on properties of auditory but not visual stimuli. We also find that a heuristically derived nonlinear modulation function reveals conditions required for sensory integration that are consistent with previously proposed models of sensory integration such as spatial matching and the principle of inverse effectiveness.


1998 ◽  
Vol 31 ◽  
pp. S179
Author(s):  
Yoshiyuki Sakata ◽  
Takashi Fujioka ◽  
Shoji Nakamura

2018 ◽  
Author(s):  
Katja Reinhard ◽  
Chen Li ◽  
Quan Do ◽  
Emily Burke ◽  
Steven Heynderickx ◽  
...  

AbstractUsing sensory information to trigger different behaviours relies on circuits that pass-through brain regions. However, the rules by which parallel inputs are routed to different downstream targets is poorly understood. The superior colliculus mediates a set of innate behaviours, receiving input from ~30 retinal ganglion cell types and projecting to behaviourally important targets including the pulvinar and parabigeminal nucleus. Combining transsynaptic circuit tracing with in-vivo and ex-vivo electrophysiological recordings we observed a projection specific logic where each collicular output pathway sampled a distinct set of retinal inputs. Neurons projecting to the pulvinar or parabigeminal nucleus uniquely sampled 4 and 7 cell types, respectively. Four others innervated both pathways. The visual response properties of retinal ganglion cells correlated well with those of their disynaptic targets. These findings suggest that projection specific sampling of retinal inputs forms a mechanistic basis for the selective triggering of visually guided behaviours by the superior colliculus.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Katja Reinhard ◽  
Chen Li ◽  
Quan Do ◽  
Emily G Burke ◽  
Steven Heynderickx ◽  
...  

Using sensory information to trigger different behaviors relies on circuits that pass through brain regions. The rules by which parallel inputs are routed to downstream targets are poorly understood. The superior colliculus mediates a set of innate behaviors, receiving input from >30 retinal ganglion cell types and projecting to behaviorally important targets including the pulvinar and parabigeminal nucleus. Combining transsynaptic circuit tracing with in vivo and ex vivo electrophysiological recordings, we observed a projection-specific logic where each collicular output pathway sampled a distinct set of retinal inputs. Neurons projecting to the pulvinar or the parabigeminal nucleus showed strongly biased sampling from four cell types each, while six others innervated both pathways. The visual response properties of retinal ganglion cells correlated well with those of their disynaptic targets. These findings open the possibility that projection-specific sampling of retinal inputs forms a basis for the selective triggering of behaviors by the superior colliculus.


2019 ◽  
Author(s):  
Satoshi Fujimoto ◽  
Marcus N. Leiwe ◽  
Richi Sakaguchi ◽  
Yuko Muroyama ◽  
Reiko Kobayakawa ◽  
...  

ABSTRACTIn the mouse olfactory bulb, sensory information detected by ∼1,000 types of olfactory sensory neurons (OSNs) is represented by the glomerular map. The second-order neurons, mitral and tufted cells, connect a single primary dendrite to one glomerulus. This forms discrete connectivity between the ∼1,000 types of input and output neurons. It has remained unknown how this discrete dendrite wiring is established during development. We found that genetically silencing neuronal activity in mitral cells, but not from OSNs, perturbs the dendrite pruning of mitral cells. In vivo calcium imaging of awake neonatal animals revealed two types of spontaneous neuronal activity in mitral/tufted cells, but not in OSNs. Pharmacological and knockout experiments revealed a role for glutamate and NMDARs. The genetic blockade of neurotransmission among mitral/tufted cells reduced spontaneous activity and perturbed dendrite wiring. Thus, spontaneous network activity generated within the olfactory bulb self-organizes the parallel discrete connections in the mouse olfactory system.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Trisha V Vaidyanathan ◽  
Max Collard ◽  
Sae Yokoyama ◽  
Michael E Reitman ◽  
Kira E Poskanzer

Non-rapid eye movement (NREM) sleep, characterized by slow-wave electrophysiological activity, underlies several critical functions, including learning and memory. However, NREM sleep is heterogeneous, varying in duration, depth, and spatially across the cortex. While these NREM sleep features are thought to be largely independently regulated, there is also evidence that they are mechanistically coupled. To investigate how cortical NREM sleep features are controlled, we examined the astrocytic network, comprising a cortex-wide syncytium that influences population-level neuronal activity. We quantified endogenous astrocyte activity in mice over natural sleep and wake, then manipulated specific astrocytic G-protein-coupled receptor (GPCR) signaling pathways in vivo. We find that astrocytic Gi- and Gq-coupled GPCR signaling separately control NREM sleep depth and duration, respectively, and that astrocytic signaling causes differential changes in local and remote cortex. These data support a model in which the cortical astrocyte network serves as a hub for regulating distinct NREM sleep features.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009181
Author(s):  
Shinya Ito ◽  
Yufei Si ◽  
Alan M. Litke ◽  
David A. Feldheim

Sensory information from different modalities is processed in parallel, and then integrated in associative brain areas to improve object identification and the interpretation of sensory experiences. The Superior Colliculus (SC) is a midbrain structure that plays a critical role in integrating visual, auditory, and somatosensory input to assess saliency and promote action. Although the response properties of the individual SC neurons to visuoauditory stimuli have been characterized, little is known about the spatial and temporal dynamics of the integration at the population level. Here we recorded the response properties of SC neurons to spatially restricted visual and auditory stimuli using large-scale electrophysiology. We then created a general, population-level model that explains the spatial, temporal, and intensity requirements of stimuli needed for sensory integration. We found that the mouse SC contains topographically organized visual and auditory neurons that exhibit nonlinear multisensory integration. We show that nonlinear integration depends on properties of auditory but not visual stimuli. We also find that a heuristically derived nonlinear modulation function reveals conditions required for sensory integration that are consistent with previously proposed models of sensory integration such as spatial matching and the principle of inverse effectiveness.


2019 ◽  
Author(s):  
N. Alex Cayco Gajic ◽  
Séverine Durand ◽  
Michael Buice ◽  
Ramakrishnan Iyer ◽  
Clay Reid ◽  
...  

SummaryHow neural populations represent sensory information, and how that representation is transformed from one brain area to another, are fundamental questions of neuroscience. The dorsolateral geniculate nucleus (dLGN) and primary visual cortex (V1) represent two distinct stages of early visual processing. Classic sparse coding theories propose that V1 neurons represent local features of images. More recent theories have argued that the visual pathway transforms visual representations to become increasingly linearly separable. To test these ideas, we simultaneously recorded the spiking activity of mouse dLGN and V1 in vivo. We find strong evidence for both sparse coding and linear separability theories. Surprisingly, the correlations between neurons in V1 (but not dLGN) were shaped as to be irrelevant for stimulus decoding, a feature which we show enables linear separability. Therefore, our results suggest that the dLGN-V1 transformation reshapes correlated variability in a manner that facilitates linear decoding while producing a sparse code.


2014 ◽  
Vol 111 (4) ◽  
pp. 755-767 ◽  
Author(s):  
C. Bertram ◽  
L. Dahan ◽  
L. W. Boorman ◽  
S. Harris ◽  
N. Vautrelle ◽  
...  

Dopaminergic (DA) neurons respond to stimuli in a wide range of modalities, although the origin of the afferent sensory signals has only recently begun to emerge. In the case of vision, an important source of short-latency sensory information seems to be the midbrain superior colliculus (SC). However, longer-latency responses have been identified that are less compatible with the primitive perceptual capacities of the colliculus. Rather, they seem more in keeping with the processing capabilities of the cortex. Given that there are robust projections from the cortex to the SC, we examined whether cortical information could reach DA neurons via a relay in the colliculus. The somatosensory barrel cortex was stimulated electrically in the anesthetized rat with either single pulses or pulse trains. Although single pulses produced small phasic activations in the colliculus, they did not elicit responses in the majority of DA neurons. However, after disinhibitory intracollicular injections of the GABAA antagonist bicuculline, collicular responses were substantially enhanced and previously unresponsive DA neurons now exhibited phasic excitations or inhibitions. Pulse trains applied to the cortex led to phasic changes (excitations to inhibitions) in the activity of DA neurons at baseline. These were blocked or attenuated by intracollicular administration of the GABAA agonist muscimol. Taken together, the results indicate that the cortex can communicate with DA neurons via a relay in the SC. As a consequence, DA neuronal activity reflecting the unexpected occurrence of salient events and that signaling more complex stimulus properties may have a common origin.


Sign in / Sign up

Export Citation Format

Share Document