scholarly journals Cortical astrocytes independently regulate sleep depth and duration via separate GPCR pathways

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Trisha V Vaidyanathan ◽  
Max Collard ◽  
Sae Yokoyama ◽  
Michael E Reitman ◽  
Kira E Poskanzer

Non-rapid eye movement (NREM) sleep, characterized by slow-wave electrophysiological activity, underlies several critical functions, including learning and memory. However, NREM sleep is heterogeneous, varying in duration, depth, and spatially across the cortex. While these NREM sleep features are thought to be largely independently regulated, there is also evidence that they are mechanistically coupled. To investigate how cortical NREM sleep features are controlled, we examined the astrocytic network, comprising a cortex-wide syncytium that influences population-level neuronal activity. We quantified endogenous astrocyte activity in mice over natural sleep and wake, then manipulated specific astrocytic G-protein-coupled receptor (GPCR) signaling pathways in vivo. We find that astrocytic Gi- and Gq-coupled GPCR signaling separately control NREM sleep depth and duration, respectively, and that astrocytic signaling causes differential changes in local and remote cortex. These data support a model in which the cortical astrocyte network serves as a hub for regulating distinct NREM sleep features.

2010 ◽  
Vol 107 (5) ◽  
pp. 2319-2324 ◽  
Author(s):  
Adolfo Rivero-Müller ◽  
Yen-Yin Chou ◽  
Inhae Ji ◽  
Svetlana Lajic ◽  
Aylin C. Hanyaloglu ◽  
...  

G protein–coupled receptors (GPCRs) are ubiquitous mediators of signaling of hormones, neurotransmitters, and sensing. The old dogma is that a one ligand/one receptor complex constitutes the functional unit of GPCR signaling. However, there is mounting evidence that some GPCRs form dimers or oligomers during their biosynthesis, activation, inactivation, and/or internalization. This evidence has been obtained exclusively from cell culture experiments, and proof for the physiological significance of GPCR di/oligomerization in vivo is still missing. Using the mouse luteinizing hormone receptor (LHR) as a model GPCR, we demonstrate that transgenic mice coexpressing binding-deficient and signaling-deficient forms of LHR can reestablish normal LH actions through intermolecular functional complementation of the mutant receptors in the absence of functional wild-type receptors. These results provide compelling in vivo evidence for the physiological relevance of intermolecular cooperation in GPCR signaling.


2003 ◽  
Vol 285 (5) ◽  
pp. H2201-H2211 ◽  
Author(s):  
Janelle R. Keys ◽  
Emily A. Greene ◽  
Chris J. Cooper ◽  
Sathyamangla V. Naga Prasad ◽  
Howard A. Rockman ◽  
...  

The G protein-coupled receptor (GPCR) kinase β-adrenergic receptor (β-AR) kinase-1 (β-ARK1) is elevated during heart failure; however, its role is not fully understood. β-ARK1 contains several domains that are capable of protein-protein interactions that may play critical roles in the regulation of GPCR signaling. In this study, we developed a novel line of transgenic mice that express an amino-terminal peptide of β-ARK1 that is comprised of amino acid residues 50–145 (β-ARKnt) in the heart to determine whether this domain has any functional significance in vivo. Surprisingly, the β-ARKnt transgenic mice presented with cardiac hypertrophy. Our data suggest that the phenotype was driven via an enhanced β-AR system, as β-ARKnt mice had elevated cardiac β-AR density. Moreover, administration of a β-AR antagonist reversed hypertrophy in these mice. Interestingly, signaling through the β-AR in response to agonist stimulation was not enhanced in these mice. Thus the amino terminus of β-ARK1 appears to be critical for normal β-AR regulation in vivo, which further supports the hypothesis that β-ARK1 plays a key role in normal and compromised cardiac GPCR signaling.


Endocrinology ◽  
2016 ◽  
Vol 157 (5) ◽  
pp. 1980-1990 ◽  
Author(s):  
Ulrike Klenke ◽  
Stephanie Constantin ◽  
Susan Wray

Abstract Peripheral feedback of gonadal estrogen to the hypothalamus is critical for reproduction. Bisphenol A (BPA), an environmental pollutant with estrogenic actions, can disrupt this feedback and lead to infertility in both humans and animals. GnRH neurons are essential for reproduction, serving as an important link between brain, pituitary, and gonads. Because GnRH neurons express several receptors that bind estrogen, they are potential targets for endocrine disruptors. However, to date, direct effects of BPA on GnRH neurons have not been shown. This study investigated the effects of BPA on GnRH neuronal activity using an explant model in which large numbers of primary GnRH neurons are maintained and express many of the receptors found in vivo. Because oscillations in intracellular calcium have been shown to correlate with electrical activity in GnRH neurons, calcium imaging was used to assay the effects of BPA. Exposure to 50μM BPA significantly decreased GnRH calcium activity. Blockage of γ-aminobutyric acid ergic and glutamatergic input did not abrogate the inhibitory BPA effect, suggesting direct regulation of GnRH neurons by BPA. In addition to estrogen receptor-β, single-cell RT-PCR analysis confirmed that GnRH neurons express G protein-coupled receptor 30 (G protein-coupled estrogen receptor 1) and estrogen-related receptor-γ, all potential targets for BPA. Perturbation studies of the signaling pathway revealed that the BPA-mediated inhibition of GnRH neuronal activity occurred independent of estrogen receptors, GPER, or estrogen-related receptor-γ, via a noncanonical pathway. These results provide the first evidence of a direct effect of BPA on GnRH neurons.


2019 ◽  
Author(s):  
Eric Engelbrecht ◽  
Michel V. Levesque ◽  
Liqun He ◽  
Michael Vanlandewijck ◽  
Anja Nitzsche ◽  
...  

AbstractDespite the medical importance of G protein-coupled receptors (GPCRs), in vivo cellular heterogeneity of GPCR signaling and downstream transcriptional responses are not understood. We report the comprehensive characterization of transcriptomes (bulk and single-cell) and chromatin domains regulated by sphingosine 1-phosphate receptor-1 (S1PR1) in adult mouse aortic endothelial cells. First, S1PR1 regulates NFkB and nuclear glucocorticoid receptor pathways to suppress inflammation-related mRNAs. Second, spatially distinct S1PR1 signaling in the aorta is associated with heterogenous endothelial cell (EC) subtypes. For example, a transcriptomically distinct arterial EC population at vascular branch points (aEC1) exhibits ligand- independent S1PR1/ß-arrestin coupling. In contrast, circulatory S1P-dependent S1PR1/ß-arrestin coupling was observed in non-branch point aEC2 cells that exhibit an inflammatory signature. Moreover, an adventitial lymphatic EC (LEC) population shows suppression of lymphangiogenic and inflammation-related transcripts in a S1P/S1PR1-dependent manner. These insights add resolution to existing concepts of GPCR signaling and S1P biology.


2013 ◽  
Vol 394 (12) ◽  
pp. 1615-1622 ◽  
Author(s):  
Gerald Thiel ◽  
Anke Kaufmann ◽  
Oliver G. Rössler

Abstract G-protein-coupled receptors (GPCRs) are the largest group of plasma membrane receptors in nature and are activated by a variety of different ligands. The biological outcome of GPCR stimulation is complex, as a plethora of signaling pathways are activated upon stimulation. These complexity and diversity of GPCR signaling make it difficult to manipulate the signaling pathway of a specific GPCR by natural ligands. To reduce the complexity in experimental settings, specific pharmacological ligands that preferentially activate one signaling pathway have been developed. In addition, G-protein-coupled designer receptors that are unresponsive to endogenous ligands but can be activated by otherwise pharmacologically inert compounds have been designed. These receptors have been termed designer receptors exclusively activated by designer drugs. The lack of constitutive activity of these designer receptors allows their use for in vitro and in vivo studies of GPCR-mediated signal transduction. The analysis of recently generated transgenic mice showed that the expression of G-protein-coupled designer receptors represents a powerful chemical-genetic tool to investigate GPCR signaling and function.


2021 ◽  
Author(s):  
Jeremie Sibille ◽  
Carolin Gehr ◽  
Kai Lun Teh ◽  
Jens Kremkow

The superior colliculus (SC) is a midbrain structure that plays a central role in visual processing. Although we have learned a considerable amount about the function of single SC neurons, the way in which sensory information is represented and processed on the population level in awake behaving animals and across a large region of the retinotopic map is still largely unknown. Partially because the SC is anatomically located below the cortical sheet and the transverse sinus, it is technically difficult to measure neuronal activity from a large population of neurons in SC. To address this, we propose a tangential recording configuration using high-density electrode probes (Neuropixels) in mouse SC in vivo that permits a large number of recording sites (~200) accessibility inside the SC circuitry. This approach thereby provides a unique opportunity to measure the activity of SC neuronal populations composing up to ~2 mm of SC tissue and characterized by receptive fields covering an extended region in the visual field. Here we describe how to perform tangential recordings along the anterior-posterior and the medio-lateral axis of the mouse SC in vivo and how to combine this approach with optogenetic tools for cell-type identification on the population level.


2000 ◽  
Vol 278 (4) ◽  
pp. R987-R994 ◽  
Author(s):  
Maciej Mrugala ◽  
Piotr Zlomanczuk ◽  
Anita Jagota ◽  
William J. Schwartz

The suprachiasmatic nucleus (SCN) is an endogenous circadian pacemaker, and SCN neurons exhibit circadian rhythms of electrophysiological activity in vitro. In vivo, the functional state of the pacemaker depends on changes in day length (photoperiod), but it is not known if this property persists in SCN tissue isolated in vitro. To address this issue, we prepared brain slices from hamsters previously entrained to light-dark (LD) cycles of different photoperiods and analyzed rhythms of SCN multiunit neuronal activity using single electrodes. Rhythms in SCN slices from hamsters entrained to 8:16-, 12:12-, and 14:10-h LD cycles were characterized by peak discharge rates relatively higher during subjective day than subjective night. The mean duration of high neuronal activity was photoperiod dependent, compressed in slices from the short (8:16 and 12:12 LD) photoperiods, and decompressed (approximately doubled) in slices from the long (14:10 LD) photoperiod. In slices from all photoperiods, the mean phase of onset of high neuronal activity appeared to be anchored to subjective dawn. Our results show that the electrophysiological activity of the SCN pacemaker depends on day length, extending previous in vivo data, and demonstrate that this capacity is sustained in vitro.


2013 ◽  
Vol 288 (38) ◽  
pp. 27327-27342 ◽  
Author(s):  
Wayne Croft ◽  
Claire Hill ◽  
Eilish McCann ◽  
Michael Bond ◽  
Manuel Esparza-Franco ◽  
...  

G protein-coupled receptors (GPCRs) can interact with regulator of G protein signaling (RGS) proteins. However, the effects of such interactions on signal transduction and their physiological relevance have been largely undetermined. Ligand-bound GPCRs initiate by promoting exchange of GDP for GTP on the Gα subunit of heterotrimeric G proteins. Signaling is terminated by hydrolysis of GTP to GDP through intrinsic GTPase activity of the Gα subunit, a reaction catalyzed by RGS proteins. Using yeast as a tool to study GPCR signaling in isolation, we define an interaction between the cognate GPCR (Mam2) and RGS (Rgs1), mapping the interaction domains. This reaction tethers Rgs1 at the plasma membrane and is essential for physiological signaling response. In vivo quantitative data inform the development of a kinetic model of the GTPase cycle, which extends previous attempts by including GPCR-RGS interactions. In vivo and in silico data confirm that GPCR-RGS interactions can impose an additional layer of regulation through mediating RGS subcellular localization to compartmentalize RGS activity within a cell, thus highlighting their importance as potential targets to modulate GPCR signaling pathways.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009832
Author(s):  
Shihai Zhang ◽  
Huanyu Wang ◽  
Chase H. Melick ◽  
Mi-Hyeon Jeong ◽  
Adna Curukovic ◽  
...  

The mammalian target of rapamycin complex 1 (mTORC1) senses multiple stimuli to regulate anabolic and catabolic processes. mTORC1 is typically hyperactivated in multiple human diseases such as cancer and type 2 diabetes. Extensive research has focused on signaling pathways that can activate mTORC1 such as growth factors and amino acids. However, less is known about signaling cues that can directly inhibit mTORC1 activity. Here, we identify A-kinase anchoring protein 13 (AKAP13) as an mTORC1 binding protein, and a crucial regulator of mTORC1 inhibition by G-protein coupled receptor (GPCR) signaling. GPCRs paired to Gαs proteins increase cyclic adenosine 3’5’ monophosphate (cAMP) to activate protein kinase A (PKA). Mechanistically, AKAP13 acts as a scaffold for PKA and mTORC1, where PKA inhibits mTORC1 through the phosphorylation of Raptor on Ser 791. Importantly, AKAP13 mediates mTORC1-induced cell proliferation, cell size, and colony formation. AKAP13 expression correlates with mTORC1 activation and overall lung adenocarcinoma patient survival, as well as lung cancer tumor growth in vivo. Our study identifies AKAP13 as an important player in mTORC1 inhibition by GPCRs, and targeting this pathway may be beneficial for human diseases with hyperactivated mTORC1.


Science ◽  
2018 ◽  
Vol 360 (6395) ◽  
pp. eaao4927 ◽  
Author(s):  
Jeffrey J. Liu ◽  
Kirti Sharma ◽  
Luca Zangrandi ◽  
Chongguang Chen ◽  
Sean J. Humphrey ◽  
...  

A systems view of G protein–coupled receptor (GPCR) signaling in its native environment is central to the development of GPCR therapeutics with fewer side effects. Using the kappa opioid receptor (KOR) as a model, we employed high-throughput phosphoproteomics to investigate signaling induced by structurally diverse agonists in five mouse brain regions. Quantification of 50,000 different phosphosites provided a systems view of KOR in vivo signaling, revealing novel mechanisms of drug action. Thus, we discovered enrichment of the mechanistic target of rapamycin (mTOR) pathway by U-50,488H, an agonist causing aversion, which is a typical KOR-mediated side effect. Consequently, mTOR inhibition during KOR activation abolished aversion while preserving beneficial antinociceptive and anticonvulsant effects. Our results establish high-throughput phosphoproteomics as a general strategy to investigate GPCR in vivo signaling, enabling prediction and modulation of behavioral outcomes.


Sign in / Sign up

Export Citation Format

Share Document