scholarly journals Active feature selection discovers minimal gene-sets for classifying cell-types and disease states in single-cell mRNA-seq data

2021 ◽  
Author(s):  
Xiaoqiao Chen ◽  
Sisi Chen ◽  
Matt Thomson

Sequencing costs currently prohibit the application of single cell mRNA-seq for many biological and clinical tasks of interest. Here, we introduce an active learning framework that constructs compressed gene sets that enable high accuracy classification of cell-types and physiological states while analyzing a minimal number of gene transcripts. Our active feature selection procedure constructs gene sets through an iterative cell-type classification task where misclassified cells are examined at each round to identify maximally informative genes through an `active' support vector machine (SVM) classifier. Our active SVM procedure automatically identifies gene sets that enables >90% cell-type classification accuracy in the Tabula Muris mouse tissue survey as well as a ~40 gene set that enables classification of multiple myeloma patient samples with >95% accuracy. Broadly, the discovery of compact but highly informative gene sets might enable drastic reductions in sequencing requirements for applications of single-cell mRNA-seq.

2019 ◽  
Author(s):  
Xiaoyang Chen ◽  
Shengquan Chen ◽  
Rui Jiang

AbstractBackgroundIn recent years, the rapid development of single-cell RNA-sequencing (scRNA-seq) techniques enables the quantitative characterization of cell types at a single-cell resolution. With the explosive growth of the number of cells profiled in individual scRNA-seq experiments, there is a demand for novel computational methods for classifying newly-generated scRNA-seq data onto annotated labels. Although several methods have recently been proposed for the cell-type classification of single-cell transcriptomic data, such limitations as inadequate accuracy, inferior robustness, and low stability greatly limit their wide applications.ResultsWe propose a novel ensemble approach, named EnClaSC, for accurate and robust cell-type classification of single-cell transcriptomic data. Through comprehensive validation experiments, we demonstrate that EnClaSC can not only be applied to the self-projection within a specific dataset and the cell-type classification across different datasets, but also scale up well to various data dimensionality and different data sparsity. We further illustrate the ability of EnClaSC to effectively make cross-species classification, which may shed light on the studies in correlation of different species. EnClaSC is freely available at https://github.com/xy-chen16/EnClaSC.ConclusionsEnClaSC enables highly accurate and robust cell-type classification of single-cell transcriptomic data via an ensemble learning method. We expect to see wide applications of our method to not only transcriptome studies, but also the classification of more general data.


2020 ◽  
Vol 21 (S13) ◽  
Author(s):  
Xiaoyang Chen ◽  
Shengquan Chen ◽  
Rui Jiang

Abstract Background In recent years, the rapid development of single-cell RNA-sequencing (scRNA-seq) techniques enables the quantitative characterization of cell types at a single-cell resolution. With the explosive growth of the number of cells profiled in individual scRNA-seq experiments, there is a demand for novel computational methods for classifying newly-generated scRNA-seq data onto annotated labels. Although several methods have recently been proposed for the cell-type classification of single-cell transcriptomic data, such limitations as inadequate accuracy, inferior robustness, and low stability greatly limit their wide applications. Results We propose a novel ensemble approach, named EnClaSC, for accurate and robust cell-type classification of single-cell transcriptomic data. Through comprehensive validation experiments, we demonstrate that EnClaSC can not only be applied to the self-projection within a specific dataset and the cell-type classification across different datasets, but also scale up well to various data dimensionality and different data sparsity. We further illustrate the ability of EnClaSC to effectively make cross-species classification, which may shed light on the studies in correlation of different species. EnClaSC is freely available at https://github.com/xy-chen16/EnClaSC. Conclusions EnClaSC enables highly accurate and robust cell-type classification of single-cell transcriptomic data via an ensemble learning method. We expect to see wide applications of our method to not only transcriptome studies, but also the classification of more general data.


2019 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zhongjie Ma ◽  
Michael Gleicher ◽  
Colin N. Dewey

SummaryCell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification by considering the rich hierarchical structure of known cell types, a source of prior knowledge that is not utilized by existing methods. Furthemore, CellO comes pre-trained on a novel, comprehensive dataset of human, healthy, untreated primary samples in the Sequence Read Archive, which to the best of our knowledge, is the most diverse curated collection of primary cell data to date. CellO’s comprehensive training set enables it to run out-of-the-box on diverse cell types and achieves superior or competitive performance when compared to existing state-of-the-art methods. Lastly, CellO’s linear models are easily interpreted, thereby enabling exploration of cell type-specific expression signatures across the ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO’s models across the ontology.HighlightWe present CellO, a tool for hierarchically classifying cell type from single-cell RNA-seq data against the graph-structured Cell OntologyCellO is pre-trained on a comprehensive dataset comprising nearly all bulk RNA-seq primary cell samples in the Sequence Read ArchiveCellO achieves superior or comparable performance with existing methods while featuring a more comprehensive pre-packaged training setCellO is built with easily interpretable models which we expose through a novel web application, the CellO Viewer, for exploring cell type-specific signatures across the Cell OntologyGraphical Abstract


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhe Cui ◽  
Ya Cui ◽  
Yan Gao ◽  
Tao Jiang ◽  
Tianyi Zang ◽  
...  

Single-cell Assay Transposase Accessible Chromatin sequencing (scATAC-seq) has been widely used in profiling genome-wide chromatin accessibility in thousands of individual cells. However, compared with single-cell RNA-seq, the peaks of scATAC-seq are much sparser due to the lower copy numbers (diploid in humans) and the inherent missing signals, which makes it more challenging to classify cell type based on specific expressed gene or other canonical markers. Here, we present svmATAC, a support vector machine (SVM)-based method for accurately identifying cell types in scATAC-seq datasets by enhancing peak signal strength and imputing signals through patterns of co-accessibility. We applied svmATAC to several scATAC-seq data from human immune cells, human hematopoietic system cells, and peripheral blood mononuclear cells. The benchmark results showed that svmATAC is free of literature-based markers and robust across datasets in different libraries and platforms. The source code of svmATAC is available at https://github.com/mrcuizhe/svmATAC under the MIT license.


2021 ◽  
Author(s):  
Risa Karakida Kawaguchi ◽  
Ziqi Tang ◽  
Stephan Fischer ◽  
Rohit Tripathy ◽  
Peter K. Koo ◽  
...  

Background: Single-cell Assay for Transposase Accessible Chromatin using sequencing (scATAC-seq) measures genome-wide chromatin accessibility for the discovery of cell-type specific regulatory networks. ScATAC-seq combined with single-cell RNA sequencing (scRNA-seq) offers important avenues for ongoing research, such as novel cell-type specific activation of enhancer and transcription factor binding sites as well as chromatin changes specific to cell states. On the other hand, scATAC-seq data is known to be challenging to interpret due to its high number of zeros as well as the heterogeneity derived from different protocols. Because of the stochastic lack of marker gene activities, cell type identification by scATAC-seq remains difficult even at a cluster level. Results: In this study, we exploit reference knowledge obtained from external scATAC-seq or scRNA-seq datasets to define existing cell types and uncover the genomic regions which drive cell-type specific gene regulation. To investigate the robustness of existing cell-typing methods, we collected 7 scATAC-seq datasets targeting mouse brain for a meta-analytic comparison of neuronal cell-type annotation, including a reference atlas generated by the BRAIN Initiative Cell Census Network (BICCN). By comparing the area under the receiver operating characteristics curves (AUROCs) for the three major cell types (inhibitory, excitatory, and non-neuronal cells), cell-typing performance by single markers is found to be highly variable even for known marker genes due to study-specific biases. However, the signal aggregation of a large and redundant marker gene set, optimized via multiple scRNA-seq data, achieves the highest cell-typing performances among 5 existing marker gene sets, from the individual cell to cluster level. That gene set also shows a high consistency with the cluster-specific genes from inhibitory subtypes in two well-annotated datasets, suggesting applicability to rare cell types. Next, we demonstrate a comprehensive assessment of scATAC-seq cell typing using exhaustive combinations of the marker gene sets with supervised learning methods including machine learning classifiers and joint clustering methods. Our results show that the combinations using robust marker gene sets systematically ranked at the top, not only with model based prediction using a large reference data but also with a simple summation of expression strengths across markers. To demonstrate the utility of this robust cell typing approach, we trained a deep neural network to predict chromatin accessibility in each subtype using only DNA sequence. Through model interpretation methods, we identify key motifs enriched about robust gene sets for each neuronal subtype. Conclusions: Through the meta-analytic evaluation of scATAC-seq cell-typing methods, we develop a novel method set to exploit the BICCN reference atlas. Our study strongly supports the value of robust marker gene selection as a feature selection tool and cross-dataset comparison between scATAC-seq datasets to improve alignment of scATAC-seq to known biology. With this novel, high quality epigenetic data, genomic analysis of regulatory regions can reveal sequence motifs that drive cell type-specific regulatory programs.


2020 ◽  
Author(s):  
Ajay Patil ◽  
Ashwini Patil

AbstractSingle-cell RNA-seq is widely used to study transcriptional patterns of genes in individual cells. In spite of current advances in technology, assigning cell types in single-cell datasets remains a bottleneck due to the lack of a comprehensive reference database and a fast search method in a single tool. CellKb Immune is a knowledgebase of manually collected, curated and annotated marker gene sets from cell types in the mammalian immune response. It finds matching cell types in literature given a list of genes using a novel rank-based algorithm optimized for rapid searching across marker gene lists of differing lengths. We evaluated the contents and search algorithm of CellKb Immune using a leave-one-out approach. We further used CellKb Immune to annotate previously defined marker gene sets from Immgen to confirm its accuracy and coverage. CellKb Immune provides an easy to use database with a fast and reliable method to find matching cell types and annotate cells in single-cell experiments in a single tool. It is available at https://www.cellkb.com/immune.


2021 ◽  
Author(s):  
Dongshunyi Li ◽  
Jun Ding ◽  
Ziv Bar-Joseph

One of the first steps in the analysis of single cell RNA-Sequencing data (scRNA-Seq) is the assignment of cell types. While a number of supervised methods have been developed for this, in most cases such assignment is performed by first clustering cells in low-dimensional space and then assigning cell types to different clusters. To overcome noise and to improve cell type assignments we developed UNIFAN, a neural network method that simultaneously clusters and annotates cells using known gene sets. UNIFAN combines both, low dimension representation for all genes and cell specific gene set activity scores to determine the clustering. We applied UNIFAN to human and mouse scRNA-Seq datasets from several different organs. As we show, by using knowledge on gene sets, UNIFAN greatly outperforms prior methods developed for clustering scRNA-Seq data. The gene sets assigned by UNIFAN to different clusters provide strong evidence for the cell type that is represented by this cluster making annotations easier.


BMC Genomics ◽  
2019 ◽  
Vol 20 (S9) ◽  
Author(s):  
Taiyun Kim ◽  
Kitty Lo ◽  
Thomas A. Geddes ◽  
Hani Jieun Kim ◽  
Jean Yee Hwa Yang ◽  
...  

Abstract Background Single-cell RNA-sequencing (scRNA-seq) is a fast emerging technology allowing global transcriptome profiling on the single cell level. Cell type identification from scRNA-seq data is a critical task in a variety of research such as developmental biology, cell reprogramming, and cancers. Typically, cell type identification relies on human inspection using a combination of prior biological knowledge (e.g. marker genes and morphology) and computational techniques (e.g. PCA and clustering). Due to the incompleteness of our current knowledge and the subjectivity involved in this process, a small amount of cells may be subject to mislabelling. Results Here, we propose a semi-supervised learning framework, named scReClassify, for ‘post hoc’ cell type identification from scRNA-seq datasets. Starting from an initial cell type annotation with potentially mislabelled cells, scReClassify first performs dimension reduction using PCA and next applies a semi-supervised learning method to learn and subsequently reclassify cells that are likely mislabelled initially to the most probable cell types. By using both simulated and real-world experimental datasets that profiled various tissues and biological systems, we demonstrate that scReClassify is able to accurately identify and reclassify misclassified cells to their correct cell types. Conclusions scReClassify can be used for scRNA-seq data as a post hoc cell type classification tool to fine-tune cell type annotations generated by any cell type classification procedure. It is implemented as an R package and is freely available from https://github.com/SydneyBioX/scReClassify


2020 ◽  
Author(s):  
Ruiyi Zhang ◽  
Yunan Luo ◽  
Jianzhu Ma ◽  
Ming Zhang ◽  
Sheng Wang

ABSTRACTRapidly generated scRNA-seq datasets enable us to understand cellular differences and the function of each individual cell at single-cell resolution. Cell type classification, which aims at characterizing and labeling groups of cells according to their gene expression, is one of the most important steps for single-cell analysis. To facilitate the manual curation process, supervised learning methods have been used to automatically classify cells. Most of the existing supervised learning approaches only utilize annotated cells in the training step while ignoring the more abundant unannotated cells. In this paper, we proposed scPretrain, a multi-task self-supervised learning approach that jointly considers annotated and unannotated cells for cell type classification. scPretrain consists of a pre-training step and a fine-tuning step. In the pre-training step, scPretrain uses a multi-task learning framework to train a feature extraction encoder based on each dataset’s pseudo-labels, where only unannotated cells are used. In the fine-tuning step, scPretrain fine-tunes this feature extraction encoder using the limited annotated cells in a new dataset. We evaluated scPretrain on 60 diverse datasets from different technologies, species and organs, and obtained a significant improvement on both cell type classification and cell clustering. Moreover, the representations obtained by scPretrain in the pre-training step also enhanced the performance of conventional classifiers such as random forest, logistic regression and support vector machines. scPretrain is able to effectively utilize the massive amount of unlabelled data and be applied to annotating increasingly generated scRNA-seq datasets.Availabilityhttps://github.com/ruiyi-zhang/scPretrain\


2020 ◽  
Vol 15 (01) ◽  
pp. 35-49
Author(s):  
Jingxin Liu ◽  
You Song ◽  
Jinzhi Lei

The cell is the basic functional and biological unit of life, and a complex system that contains a huge number of molecular components. How can we quantify the macroscopic state of a cell from the microscopic information of these molecular components? This is a fundamental question to increase the understanding of the human body. The recent maturation of single-cell RNA sequencing (scRNA-seq) technologies has allowed researchers to gain information on the transcriptomes of individual cells. Although considerable progress has been made in terms of cell-type clustering over the past few years, there is no strong consensus about how to define a cell state from scRNA-seq data. Here, we present single-cell entropy (scEntropy) as an order parameter for cellular transcriptome profiles from scRNA-seq data. scEntropy is a straightforward parameter with which to define the intrinsic transcriptional state of a cell that can provide a quantity to measure the developmental process and to distinguish different cell types. The proposed scEntropy followed by Gaussian mixture model (scEGMM) provides a coherent method of cell-type classification that is simple, includes no parameters or clustering and is comparable to existing machine learning-based methods in benchmarking studies. The results of cell-type classification based on scEGMM are robust and easy to biologically interpret.


Sign in / Sign up

Export Citation Format

Share Document