scholarly journals Separate physiological roles of specific and non-specific DNA binding of HU protein in Escherichia coli

2021 ◽  
Author(s):  
Sankar Adhya ◽  
Subhash Verma

Conserved in bacteria, the histone-like protein HU is crucial for genome organization and expression of many genes. It binds DNA regardless of the sequence and exhibits two binding affinities in vitro, low-affinity to any B-DNA (non-specific) and high-affinity to DNA with distortions like kinks and cruciforms (structure-specific), but the physiological relevance of the two binding modes needed further investigation. We validated and defined the three conserved lysine residues, K3, K18, and K83, in Escherichia coli HU as critical amino acid residues for both non-specific and structure-specific binding and the conserved proline residue P63 additionally for only the structure-specific binding. By mutating these residues in vivo, we showed that two DNA binding modes of HU play separate physiological roles. The DNA structure-specific binding, occurring at specific sites in the E. coli genome, promotes higher-order DNA structure formation, regulating the expression of many genes, including those involved in chromosome maintenance and segregation. The non-specific binding participates in numerous associations of HU with the chromosomal DNA, dictating chromosome structure and organization. Our findings underscore the importance of DNA structure in transcription regulation and promiscuous DNA-protein interactions in a dynamic organization of a bacterial genome.

Author(s):  
Shangfei Wei ◽  
Tianming Zhao ◽  
Jie Wang ◽  
Xin Zhai

: Allostery is an efficient and particular regulatory mechanism to regulate protein functions. Different from conserved orthosteric sites, allosteric sites have distinctive functional mechanism to form the complex regulatory network. In drug discovery, kinase inhibitors targeting the allosteric pockets have received extensive attention for the advantages of high selectivity and low toxicity. The approval of trametinib as the first allosteric inhibitor validated that allosteric inhibitors could be used as effective therapeutic drugs for treatment of diseases. To date, a wide range of allosteric inhibitors have been identified. In this perspective, we outline different binding modes and potential advantages of allosteric inhibitors. In the meantime, the research processes of typical and novel allosteric inhibitors are described briefly in terms of structureactivity relationships, ligand-protein interactions and in vitro and in vivo activity. Additionally, challenges as well as opportunities are presented.


1995 ◽  
Vol 15 (3) ◽  
pp. 1405-1421 ◽  
Author(s):  
C C Adams ◽  
J L Workman

To investigate mechanisms by which multiple transcription factors access complex promoters and enhancers within cellular chromatin, we have analyzed the binding of disparate factors to nucleosome cores. We used a purified in vitro system to analyze binding of four activator proteins, two GAL4 derivatives, USF, and NF-kappa B (KBF1), to reconstituted nucleosome cores containing different combinations of binding sites. Here we show that binding of any two or all three of these factors to nucleosomal DNA is inherently cooperative. Thus, the binuclear Zn clusters of GAL4, the helix-loop-helix/basic domains of USF, and the rel domain of NF-kappa B all participated in cooperative nucleosome binding, illustrating that this effect is not restricted to a particular DNA-binding domain. Simultaneous binding by two factors increased the affinity of individual factors for nucleosomal DNA by up to 2 orders of magnitude. Importantly, cooperative binding resulted in efficient nucleosome binding by factors (USF and NF-kappa B) which independently possess little nucleosome-binding ability. The participation of GAL4 derivatives in cooperative nucleosome binding required only DNA-binding and dimerization domains, indicating that disruption of histone-DNA contacts by factor binding was responsible for the increased affinity of additional factors. Cooperative nucleosome binding required sequence-specific binding of all transcription factors, appeared to have spatial constraints, and was independent of the orientation of the binding sites on the nucleosome. These results indicate that cooperative nucleosome binding is a general mechanism that may play a significant role in loading complex enhancer and promoter elements with multiple diverse factors in chromatin and contribute to the generation of threshold responses and transcriptional synergy by multiple activator sites in vivo.


1992 ◽  
Vol 12 (7) ◽  
pp. 3006-3014 ◽  
Author(s):  
E A Golemis ◽  
R Brent

Many studies of transcription activation employ fusions of activation domains to DNA binding domains derived from the bacterial repressor LexA and the yeast activator GAL4. Such studies often implicitly assume that DNA binding by the chimeric proteins is equivalent to that of the protein donating the DNA binding moiety. To directly investigate this issue, we compared operator binding by a series of LexA-derivative proteins to operator binding by native LexA, by using both in vivo and in vitro assays. We show that operator binding by many proteins such as LexA-Myc, LexA-Fos, and LexA-Bicoid is severely impaired, while binding of other LexA-derivative proteins, such as those that carry bacterially encoded acidic sequences ("acid blobs"), is not. Our results also show that DNA binding by LexA derivatives that contain the LexA carboxy-terminal dimerization domain (amino acids 88 to 202) is considerably stronger than binding by fusions that lack it and that heterologous dimerization motifs cannot substitute for the LexA88-202 function. These results suggest the need to reevaluate some previous studies of activation that employed LexA derivatives and modifications to recent experimental approaches that use LexA and GAL4 derivatives to detect and study protein-protein interactions.


1996 ◽  
Vol 16 (3) ◽  
pp. 1169-1178 ◽  
Author(s):  
D W White ◽  
G A Pitoc ◽  
T D Gilmore

The v-Rel oncoprotein of the avian Rev-T retrovirus is a member of the Rel/NF-kappa B family of transcription factors. The mechanism by which v-Rel malignantly transforms chicken spleen cells is not precisely known. To gain a better understanding of functions needed for transformation by v-Rel, we have now characterized the activities of mutant v-Rel proteins that are defective for specific protein-protein interactions. Mutant v-delta NLS, which has a deletion of the primary v-Rel nuclear localizing sequence, does not interact efficiently with I kappa B-alpha but still transforms chicken spleen cells approximately as well as wild-type v-Rel, indicating that interaction with I kappa B-alpha is not essential for the v-Rel transforming function. A second v-Rel mutant, v-SPW, has been shown to be defective for the formation of homodimers, DNA binding, and transformation. However, we now find that v-SPW can form functional DNA-binding heterodimers in vitro and in vivo with the cellular protein NF-kappa B p-52. Most strikingly, coexpression of v-SPW and p52 from a retroviral vector can induce the malignant transformation of chicken spleen cells, whereas expression of either protein alone cannot. Our results are most consistent with a model wherein Rel homodimers or heterodimers must bind DNA and alter gene expression in order to transform lymphoid cells.


2007 ◽  
Vol 27 (8) ◽  
pp. 2919-2933 ◽  
Author(s):  
Benoit Grondin ◽  
Martin Lefrancois ◽  
Mathieu Tremblay ◽  
Marianne Saint-Denis ◽  
André Haman ◽  
...  

ABSTRACT Transcription factors can function as DNA-binding-specific activators or as coactivators. c-Jun drives gene expression via binding to AP-1 sequences or as a cofactor for PU.1 in macrophages. c-Jun heterodimers bind AP-1 sequences with higher affinity than homodimers, but how c-Jun works as a coactivator is unknown. Here, we provide in vitro and in vivo evidence that c-Jun homodimers are recruited to the interleukin-1β (IL-1β) promoter in the absence of direct DNA binding via protein-protein interactions with DNA-anchored PU.1 and CCAAT/enhancer-binding protein β (C/EBPβ). Unexpectedly, the interaction interface with PU.1 and C/EBPβ involves four of the residues within the basic domain of c-Jun that contact DNA, indicating that the capacities of c-Jun to function as a coactivator or as a DNA-bound transcription factor are mutually exclusive. Our observations indicate that the IL-1β locus is occupied by PU.1 and C/EBPβ and poised for expression and that c-Jun enhances transcription by facilitating a rate-limiting step, the assembly of the RNA polymerase II preinitiation complex, with minimal effect on the local chromatin status. We propose that the basic domain of other transcription factors may also be redirected from a DNA interaction mode to a protein-protein interaction mode and that this switch represents a novel mechanism regulating gene expression profiles.


1998 ◽  
Vol 180 (3) ◽  
pp. 571-577 ◽  
Author(s):  
Li-Mei Chen ◽  
Thomas J. Goss ◽  
Robert A. Bender ◽  
Simon Swift ◽  
Stanley Maloy

ABSTRACT The nac gene product is a LysR regulatory protein required for nitrogen regulation of several operons fromKlebsiella aerogenes and Escherichia coli. We used P22 challenge phage carrying the put control region from K. aerogenes to identify the nucleotide residues important for nitrogen assimilation control protein (NAC) binding in vivo. Mutations in an asymmetric 30-bp region prevented DNA binding by NAC. Gel retardation experiments confirmed that NAC specifically binds to this sequence in vitro, but NAC does not bind to the corresponding region from the put operon of Salmonella typhimurium, which is not regulated by NAC.


1993 ◽  
Vol 13 (3) ◽  
pp. 1805-1814
Author(s):  
H Wang ◽  
D J Stillman

The yeast SIN3 gene (also known as SDI1, UME4, RPD1, and GAM2) has been identified as a transcriptional regulator. Previous work has led to the suggestion that SIN3 regulates transcription via interactions with DNA-binding proteins. Although the SIN3 protein is located in the nucleus, it does not bind directly to DNA in vitro. We have expressed a LexA-SIN3 fusion protein in Saccharomyces cerevisiae and show that this fusion protein represses transcription from heterologous promoters that contain lexA operators. The predicted amino acid sequence of the SIN3 protein contains four copies of a paired amphipathic helix (PAH) motif, similar to motifs found in HLH (helix-loop-helix) and TPR (tetratricopeptide repeat) proteins, and these motifs are proposed to be involved in protein-protein interactions. We have conducted a deletion analysis of the SIN3 gene and show that the PAH motifs are required for SIN3 activity. Additionally, the C-terminal region of the SIN3 protein is sufficient for repression activity in a LexA-SIN3 fusion, and deletion of a PAH motif in this region inactivates this repression activity. A model is presented in which SIN3 recognizes specific DNA-binding proteins in vivo in order to repress transcription.


2018 ◽  
Vol 115 (16) ◽  
pp. E3692-E3701 ◽  
Author(s):  
Chaitanya Rastogi ◽  
H. Tomas Rube ◽  
Judith F. Kribelbauer ◽  
Justin Crocker ◽  
Ryan E. Loker ◽  
...  

Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes.


2004 ◽  
Vol 3 (2) ◽  
pp. 277-287 ◽  
Author(s):  
Itay Onn ◽  
Neta Milman-Shtepel ◽  
Joseph Shlomai

ABSTRACT Kinetoplast DNA, the mitochondrial DNA of the trypanosomatid Crithidia fasciculata, is a remarkable structure containing 5,000 topologically linked DNA minicircles. Their replication is initiated at two conserved sequences, a dodecamer, known as the universal minicircle sequence (UMS), and a hexamer, which are located at the replication origins of the minicircle L- and H-strands, respectively. A UMS-binding protein (UMSBP), binds specifically the conserved origin sequences in their single stranded conformation. The five CCHC-type zinc knuckle motifs, predicted in UMSBP, fold into zinc-dependent structures capable of binding a single-stranded nucleic acid ligand. Zinc knuckles that are involved in the binding of DNA differ from those mediating protein-protein interactions that lead to the dimerization of UMSBP. Both UMSBP DNA binding and its dimerization are sensitive to redox potential. Oxidation of UMSBP results in the protein dimerization, mediated through its N-terminal domain, with a concomitant inhibition of its DNA-binding activity. UMSBP reduction yields monomers that are active in the binding of DNA through the protein C-terminal region. C. fasciculata trypanothione-dependent tryparedoxin activates the binding of UMSBP to UMS DNA in vitro. The possibility that UMSBP binding at the minicircle replication origin is regulated in vivo by a redox potential-based mechanism is discussed.


Sign in / Sign up

Export Citation Format

Share Document